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Introduction



Introduction

� DeBasher is a �ow-based programming extension for Bash

� Flow-based programming combines data �ow programming with

component-based software engineering

� facilitates the implementation of highly modular programs

� exploits the parallelism implicitly determined by data dependencies

between components
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Getting Started



Installation

� Obtain the package using git:

git clone https://github.com/daormar/debasher.git

� Change to the directory with the package's source code and type:

./reconf

./configure

make

make install

NOTE: use --prefix option of configure to install the package in a

custom directory
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Third Party Software

� Bash

� Python

� Slurm Workload Manager (optional)

� Conda (optional)

� Docker (optional)
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Quickstart Example

� How to implement the �Hello World!� program?

� If we call our program debasher_hello_world, we should create a

�le with the same name and Bash extension,

debasher_hello_world.sh:
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Quickstart Example: Code

hello_world_explain_cmdline_opts()
{

# -s option
local description="String to be displayed ('Hello World!' by default)"
explain_cmdline_opt "-s" "<string>" "$description"

}

hello_world_define_opts()
{

# Initialize variables
local cmdline=$1
local optlist=""

# Obtain value of -s option
local str=$(get_cmdline_opt "${cmdline}" "-s")

# -s option
if [ "${str}" = "${OPT_NOT_FOUND}" ]; then

define_opt "-s" "Hello World!" optlist || return 1
else

define_opt "-s" "$str" optlist || return 1
fi

# Save option list
save_opt_list optlist

}

hello_world()
{

# Initialize variables
local str=$(read_opt_value_from_func_args "-s" "$@")

# Show message
echo "${str}"

}

debasher_hello_world_program()
{

add_debasher_process "hello_world" "cpus=1 mem=32 time=00:01:00"
}
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Quickstart Example: Main Elements

� DeBasher uses three entities: processes, programs and modules

� A program is composed of a set of processes

� A module is a �le storing multiple processes and one program

� Processes and modules are identi�ed by a particular name, and their

behavior is de�ned by a set of functions

� The program associated with a module is also de�ned by a function
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Quickstart Example: Approach

� DeBasher adopts an object-oriented programming approach

� Each function implements a speci�c method

� Function names have two parts: the name of the program or

module, and a su�x identifying the method

� In the �Hello World!� example we have a module named

debasher_hello_world that is stored in the

debasher_hello_world.sh �le

� The module de�nes a program that executes the process

hello_world
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Quickstart Example: Functions Involved

� hello_world_explain_cmdline_opts: documents the command

line options that can be provided to hello_world. In this case, the

-s option, which allows to specify the string to be shown. For this

purpose, the explain_cmdline_opt API function is used

� hello_world_explain_define_opts: the define_opts method

speci�es the options that will be provided to the hello_world

process. Using the get_cmdline_opt API function, it retrieves the

value of the -s command-line option, (or -s "Hello World!" if

not provided). The code uses the define_opt API function to

register options and the save_opt_list function to save them
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Quickstart Example: Functions Involved

� hello_world: implements the process itself (in this case the

function name does not incorporate any su�x). hello_world reads

its options using the read_opt_value_from_func_args API

function

� debasher_hello_world_program: the program method allows to

de�ne the processes involved in the execution. In this case, only one

process is involved, hello_world, which is added to the by means

of the add_debasher_process function
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Quickstart Example: Program Execution

� In order to execute the program, DeBasher incorporates the

debasher_exec tool

� Provided that the debasher_hello_world.sh module �le is in the

current directory and that debasher_exec is included in the PATH

variable, we can execute the following:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out

where out is the output directory

The DeBasher Software Package 11



Quickstart Example: Program Execution

� Since the output of the program is just a string printed to the

standard output, we can use the debasher_get_stdout command

to visualize such a string

� For this purpose, we should provide the name of the output

directory and the name of the process whose standard output we

want to visualize:

$ debasher_get_stdout -d out -p hello_world

� The output of the previous command is:

Hello World!
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Executing DeBasher Programs



Program Execution

� DeBasher incorporates a speci�c tool to execute programs called

debasher_exec

� To get help for the tool we can execute:

$ debasher_exec --help

� debasher_exec only has two mandatory input options:

� --pfile <string>: allows to de�ne the DeBasher �le specifying

the program to be executed

� --outdir <string>: speci�es the name of the output directory
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Program Execution: Visualizing Command Line Options

� The command line options for the DeBasher program should be

provided to debasher_exec.

� To visualize them, we can use the --show-cmdline-opts option.

Assuming we work with the �Hello World!� program:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --show-cmdline-opts
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Program Execution: Visualizing Command Line Options

� The output of the previous command is:

# Command line options for the program...
CATEGORY: GENERAL
-s <string> String to be displayed ('Hello World!' by default) [hello_world]

� Command line options can be divided into di�erent categories,

being the �GENERAL� category the default one

� In this case, the �GENERAL� category contains the -s option, used

to de�ne the string to be displayed
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Program Execution: Troubleshooting Options

� When working with complex programs, it is useful to ensure that all

the options are passed correctly

� debasher_exec incorporates two options for that purpose:

� --check-proc-opts: when providing this option, debasher_exec

checks if all the options are available for the processes that compose

a program. If there are options missing, an error message is shown.

Otherwise, the options are shown and the tool �nishes its execution

� --debug: this option carries out all the necessary steps to execute a

DeBasher program, with the exception of the execution itself
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Program Execution: Using the Built-In Scheduler

� debasher_exec incorporates the --sched option to specify which

scheduler is used to orchestrate program execution

� DeBasher incorporates a built-in scheduler that can be activated for

the �Hello Word!� program as follows:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --sched BUILTIN

� It is possible to specify the number of CPUs and the amount of

RAM that is available using the following options:

� --builtinsched-cpus <int>: number CPUs available for the

built-in scheduler. A value of zero means unlimited CPUs

� --builtinsched-mem <int>: RAM in MB that can be used by the

built-in scheduler. A value of zero means unlimited memory
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Program Execution: Using External Schedulers

� It is also possible to combine debasher_exec with external

schedulers

� Currently, DeBasher provides support for the well known Slurm

scheduler:

� To make Slurm work in combination with DeBasher, it is necessary

to install and properly con�gure the scheduler in the machine where

DeBasher will be executed

� Once Slurm is installed, we can proceed with the installation of

DeBasher, which will automatically detect Slurm's availability.

� If Slurm and DeBasher are correctly con�gured, then we can

combine them by means of the following command:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --sched SLURM
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Structure of the Output Directory

� debasher_exec stores its results in an output directory

� Assuming that we executed program with two processes a and b,

and that the output directory was out, its content would be:

out
|-- a
| |-- file1
| |-- file2
| `-- ...
|-- b
| |-- file1
| |-- file2
| `-- ...
|-- __exec__
| |-- a
| | |-- a
| | |-- a.finished (depends on execution status)
| | |-- a.id (depends on execution status)
| | |-- a.sched_out (depends on execution status)
| | `-- a.stdout (depends on execution status)
| `-- b
| |-- b
| |-- b.finished (depends on execution status)
| |-- b.id (depends on execution status)
| |-- b.sched_out (depends on execution status)
| `-- b.stdout (depends on execution status)
|-- __graphs__
| |-- dependency_graph.dot
| |-- dependency_graph.pdf
| |-- process_graph.pdf (optional)
| `-- process_graph.pdf (optional)
|-- command_line.sh
|-- program.fifos
|-- program.opts
`-- program.procspec
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Structure of the Output Directory: Directories

� a: stores the output �les (if any) of process a

� b: it is the output directory of process b

� __exec__: stores the execution information for each process. The

following �les are created for any given process:

� <process_name>: contains the code to be executed

� <process_name>.finished: this �le is created to signal that the

execution of the process has �nished

� <process_name>.id: contains an identi�er of the process created

by the scheduler being used

� <process_name>.sched_out: contains the process standard and

error outputs and also some scheduler information

� <process_name>.stdout: contains the process' standard output
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Structure of the Output Directory: Directories

� __graphs__: contains graphical representations of the program:

� dependency_graph.pdf: graph showing process dependencies

� process_graph.pdf: shows relations between process options,

generated only if --gen-proc-graph is provided to debasher_exec
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Structure of the Output Directory: Files

� comand_line.sh: stores the command line used to execute the

program

� program.fifos: contains information about the FIFOs used by the

program

� program.opts: contains an exhaustive list of all the options

provided to the program processes

� program.procspec: contains a speci�cation for each process

executed within a given program
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Process Status Visualization

� The debasher_status tool obtains information about the

execution status of each process involved in a program

� Example for the "Hello World!" program previously executed:

$ debasher_status -d out

� The output of the tool is:

PROCESS: hello_world ; STATUS: FINISHED
* SUMMARY: num_processes= 1 ; finished= 1 ; inprogress= 0 ; unfinished= 0 ; unfinished_but_runnable= 0 ; todo= 0
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Process Status Visualization

� DeBasher Statuses:

� finished: the process successfully completed execution

� inprogress: the process is currently being executed

� unfinished: the process did not successfully complete execution

� unfinished_but_runnable: the process has not completed

execution yet, and is not being executed. However, it can resume its

execution

� todo: the process has not yet started execution

� debasher_status can also show the status of an individual process

using the -p option:

$ debasher_status -d out -p hello_world
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Program Stop

� When a DeBasher program is being executed, it is possible to stop

a process or the whole program using the debasher_stop tool

� The tool requires the name of the output directory and, optionally,

the name of a speci�c process should be provided

� The following command stops the hello_word process that is

executed within the �Hello World!� program:

$ debasher_stop -d out -p hello_world

� To stop the whole program, the �-p� option is omitted:

$ debasher_stop -d out
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Program Statistics Generation

� The debasher_stats tool allows to generate statistics for a

DeBasher program

� The program report process statuses and the elapsed time in

seconds until completion

� Input parameters include the program's output directory and,

optionally, the process name whose statistics should be obtained
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Program Statistics Generation

� Example for the hello_world process that belongs to the �Hello

World!� program:

$ debasher_stats -d out -p hello_world

� To get statistics for all processes, we can simply type:

$ debasher_stats -d out

The DeBasher Software Package 27



Additional Information



Additional Information

https://debasher.readthedocs.io/en/latest/index.html
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