
The DeBasher Software Package

Daniel Ortiz Martínez

Mathematics and Computer Science Department

University of Barcelona

Table of Contents

1. Introduction

2. Getting Started

3. Executing DeBasher Programs

4. Additional Information

Introduction

Introduction

� DeBasher is a �ow-based programming extension for Bash

� Flow-based programming combines data �ow programming with

component-based software engineering

� facilitates the implementation of highly modular programs

� exploits the parallelism implicitly determined by data dependencies

between components

The DeBasher Software Package 2

https://en.wikipedia.org/wiki/Flow-based_programming

Getting Started

Installation

� Obtain the package using git:

git clone https://github.com/daormar/debasher.git

� Change to the directory with the package's source code and type:

./reconf

./configure

make

make install

NOTE: use --prefix option of configure to install the package in a

custom directory

The DeBasher Software Package 3

Third Party Software

� Bash

� Python

� Slurm Workload Manager (optional)

� Conda (optional)

� Docker (optional)

The DeBasher Software Package 4

Quickstart Example

� How to implement the �Hello World!� program?

� If we call our program debasher_hello_world, we should create a

�le with the same name and Bash extension,

debasher_hello_world.sh:

The DeBasher Software Package 5

Quickstart Example: Code

hello_world_explain_cmdline_opts()
{

-s option
local description="String to be displayed ('Hello World!' by default)"
explain_cmdline_opt "-s" "<string>" "$description"

}

hello_world_define_opts()
{

Initialize variables
local cmdline=$1
local optlist=""

Obtain value of -s option
local str=$(get_cmdline_opt "${cmdline}" "-s")

-s option
if ["${str}" = "${OPT_NOT_FOUND}"]; then

define_opt "-s" "Hello World!" optlist || return 1
else

define_opt "-s" "$str" optlist || return 1
fi

Save option list
save_opt_list optlist

}

hello_world()
{

Initialize variables
local str=$(read_opt_value_from_func_args "-s" "$@")

Show message
echo "${str}"

}

debasher_hello_world_program()
{

add_debasher_process "hello_world" "cpus=1 mem=32 time=00:01:00"
}

The DeBasher Software Package 6

Quickstart Example: Main Elements

� DeBasher uses three entities: processes, programs and modules

� A program is composed of a set of processes

� A module is a �le storing multiple processes and one program

� Processes and modules are identi�ed by a particular name, and their

behavior is de�ned by a set of functions

� The program associated with a module is also de�ned by a function

The DeBasher Software Package 7

Quickstart Example: Approach

� DeBasher adopts an object-oriented programming approach

� Each function implements a speci�c method

� Function names have two parts: the name of the program or

module, and a su�x identifying the method

� In the �Hello World!� example we have a module named

debasher_hello_world that is stored in the

debasher_hello_world.sh �le

� The module de�nes a program that executes the process

hello_world

The DeBasher Software Package 8

Quickstart Example: Functions Involved

� hello_world_explain_cmdline_opts: documents the command

line options that can be provided to hello_world. In this case, the

-s option, which allows to specify the string to be shown. For this

purpose, the explain_cmdline_opt API function is used

� hello_world_explain_define_opts: the define_opts method

speci�es the options that will be provided to the hello_world

process. Using the get_cmdline_opt API function, it retrieves the

value of the -s command-line option, (or -s "Hello World!" if

not provided). The code uses the define_opt API function to

register options and the save_opt_list function to save them

The DeBasher Software Package 9

Quickstart Example: Functions Involved

� hello_world: implements the process itself (in this case the

function name does not incorporate any su�x). hello_world reads

its options using the read_opt_value_from_func_args API

function

� debasher_hello_world_program: the program method allows to

de�ne the processes involved in the execution. In this case, only one

process is involved, hello_world, which is added to the by means

of the add_debasher_process function

The DeBasher Software Package 10

Quickstart Example: Program Execution

� In order to execute the program, DeBasher incorporates the

debasher_exec tool

� Provided that the debasher_hello_world.sh module �le is in the

current directory and that debasher_exec is included in the PATH

variable, we can execute the following:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out

where out is the output directory

The DeBasher Software Package 11

Quickstart Example: Program Execution

� Since the output of the program is just a string printed to the

standard output, we can use the debasher_get_stdout command

to visualize such a string

� For this purpose, we should provide the name of the output

directory and the name of the process whose standard output we

want to visualize:

$ debasher_get_stdout -d out -p hello_world

� The output of the previous command is:

Hello World!

The DeBasher Software Package 12

Executing DeBasher Programs

Program Execution

� DeBasher incorporates a speci�c tool to execute programs called

debasher_exec

� To get help for the tool we can execute:

$ debasher_exec --help

� debasher_exec only has two mandatory input options:

� --pfile <string>: allows to de�ne the DeBasher �le specifying

the program to be executed

� --outdir <string>: speci�es the name of the output directory

The DeBasher Software Package 13

Program Execution: Visualizing Command Line Options

� The command line options for the DeBasher program should be

provided to debasher_exec.

� To visualize them, we can use the --show-cmdline-opts option.

Assuming we work with the �Hello World!� program:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --show-cmdline-opts

The DeBasher Software Package 14

Program Execution: Visualizing Command Line Options

� The output of the previous command is:

Command line options for the program...
CATEGORY: GENERAL
-s <string> String to be displayed ('Hello World!' by default) [hello_world]

� Command line options can be divided into di�erent categories,

being the �GENERAL� category the default one

� In this case, the �GENERAL� category contains the -s option, used

to de�ne the string to be displayed

The DeBasher Software Package 15

Program Execution: Troubleshooting Options

� When working with complex programs, it is useful to ensure that all

the options are passed correctly

� debasher_exec incorporates two options for that purpose:

� --check-proc-opts: when providing this option, debasher_exec

checks if all the options are available for the processes that compose

a program. If there are options missing, an error message is shown.

Otherwise, the options are shown and the tool �nishes its execution

� --debug: this option carries out all the necessary steps to execute a

DeBasher program, with the exception of the execution itself

The DeBasher Software Package 16

Program Execution: Using the Built-In Scheduler

� debasher_exec incorporates the --sched option to specify which

scheduler is used to orchestrate program execution

� DeBasher incorporates a built-in scheduler that can be activated for

the �Hello Word!� program as follows:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --sched BUILTIN

� It is possible to specify the number of CPUs and the amount of

RAM that is available using the following options:

� --builtinsched-cpus <int>: number CPUs available for the

built-in scheduler. A value of zero means unlimited CPUs

� --builtinsched-mem <int>: RAM in MB that can be used by the

built-in scheduler. A value of zero means unlimited memory

The DeBasher Software Package 17

Program Execution: Using External Schedulers

� It is also possible to combine debasher_exec with external

schedulers

� Currently, DeBasher provides support for the well known Slurm

scheduler:

� To make Slurm work in combination with DeBasher, it is necessary

to install and properly con�gure the scheduler in the machine where

DeBasher will be executed

� Once Slurm is installed, we can proceed with the installation of

DeBasher, which will automatically detect Slurm's availability.

� If Slurm and DeBasher are correctly con�gured, then we can

combine them by means of the following command:

$ debasher_exec --pfile debasher_hello_world.sh --outdir out --sched SLURM

The DeBasher Software Package 18

https://slurm.schedmd.com/
https://slurm.schedmd.com/

Structure of the Output Directory

� debasher_exec stores its results in an output directory

� Assuming that we executed program with two processes a and b,

and that the output directory was out, its content would be:

out
|-- a
| |-- file1
| |-- file2
| `-- ...
|-- b
| |-- file1
| |-- file2
| `-- ...
|-- __exec__
| |-- a
| | |-- a
| | |-- a.finished (depends on execution status)
| | |-- a.id (depends on execution status)
| | |-- a.sched_out (depends on execution status)
| | `-- a.stdout (depends on execution status)
| `-- b
| |-- b
| |-- b.finished (depends on execution status)
| |-- b.id (depends on execution status)
| |-- b.sched_out (depends on execution status)
| `-- b.stdout (depends on execution status)
|-- __graphs__
| |-- dependency_graph.dot
| |-- dependency_graph.pdf
| |-- process_graph.pdf (optional)
| `-- process_graph.pdf (optional)
|-- command_line.sh
|-- program.fifos
|-- program.opts
`-- program.procspec

The DeBasher Software Package 19

Structure of the Output Directory: Directories

� a: stores the output �les (if any) of process a

� b: it is the output directory of process b

� __exec__: stores the execution information for each process. The

following �les are created for any given process:

� <process_name>: contains the code to be executed

� <process_name>.finished: this �le is created to signal that the

execution of the process has �nished

� <process_name>.id: contains an identi�er of the process created

by the scheduler being used

� <process_name>.sched_out: contains the process standard and

error outputs and also some scheduler information

� <process_name>.stdout: contains the process' standard output

The DeBasher Software Package 20

Structure of the Output Directory: Directories

� __graphs__: contains graphical representations of the program:

� dependency_graph.pdf: graph showing process dependencies

� process_graph.pdf: shows relations between process options,

generated only if --gen-proc-graph is provided to debasher_exec

The DeBasher Software Package 21

Structure of the Output Directory: Files

� comand_line.sh: stores the command line used to execute the

program

� program.fifos: contains information about the FIFOs used by the

program

� program.opts: contains an exhaustive list of all the options

provided to the program processes

� program.procspec: contains a speci�cation for each process

executed within a given program

The DeBasher Software Package 22

Process Status Visualization

� The debasher_status tool obtains information about the

execution status of each process involved in a program

� Example for the "Hello World!" program previously executed:

$ debasher_status -d out

� The output of the tool is:

PROCESS: hello_world ; STATUS: FINISHED
* SUMMARY: num_processes= 1 ; finished= 1 ; inprogress= 0 ; unfinished= 0 ; unfinished_but_runnable= 0 ; todo= 0

The DeBasher Software Package 23

Process Status Visualization

� DeBasher Statuses:

� finished: the process successfully completed execution

� inprogress: the process is currently being executed

� unfinished: the process did not successfully complete execution

� unfinished_but_runnable: the process has not completed

execution yet, and is not being executed. However, it can resume its

execution

� todo: the process has not yet started execution

� debasher_status can also show the status of an individual process

using the -p option:

$ debasher_status -d out -p hello_world

The DeBasher Software Package 24

Program Stop

� When a DeBasher program is being executed, it is possible to stop

a process or the whole program using the debasher_stop tool

� The tool requires the name of the output directory and, optionally,

the name of a speci�c process should be provided

� The following command stops the hello_word process that is

executed within the �Hello World!� program:

$ debasher_stop -d out -p hello_world

� To stop the whole program, the �-p� option is omitted:

$ debasher_stop -d out

The DeBasher Software Package 25

Program Statistics Generation

� The debasher_stats tool allows to generate statistics for a

DeBasher program

� The program report process statuses and the elapsed time in

seconds until completion

� Input parameters include the program's output directory and,

optionally, the process name whose statistics should be obtained

The DeBasher Software Package 26

Program Statistics Generation

� Example for the hello_world process that belongs to the �Hello

World!� program:

$ debasher_stats -d out -p hello_world

� To get statistics for all processes, we can simply type:

$ debasher_stats -d out

The DeBasher Software Package 27

Additional Information

Additional Information

https://debasher.readthedocs.io/en/latest/index.html

The DeBasher Software Package 28

https://debasher.readthedocs.io/en/latest/index.html

	Introduction
	Getting Started
	Executing DeBasher Programs
	Additional Information

