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ABSTRACT

The purpose of this research is to study human metabolism, and more specifically the me-
tabolism of cancer, under a systems biology perspective. In particular, we applied the so-
called flux balance analysis (FBA) technique to study the differences between healthy and
cancerous cell metabolism. FBA is a systems biology technique able to obtain metabolic
models for large-scale systems, in contrast to the severe scale limitations of other popu-
lar approaches such as that based on ordinary differential equations. Due to the fact that
conventional FBA is not able to reflect how metabolism works for each specific tissue,
we applied the tissue-specific FBA method proposed by Shlomi and collaborators, which
works by integrating gene expression data with metabolic model reconstructions.

Using tissue-specific FBA, we compared the metabolism of sixty samples of normal
renal cells with that of another sixty samples coming from cancerous cells extracted from
The Cancer Genome Atlas (TCGA) database. To carry out the analysis, RNA-Seq ex-
pression data provided by TCGA was integrated with the human metabolic model recon-
struction stored in the Recon 2 database. The obtained results were used to conduct a
differential reaction expression study based on statistical hypothesis testing. The study
produced a p-value for each metabolic reaction. To facilitate the interpretation of the
p-values, they were graphically represented in metabolic maps following two different
strategies. On the one hand, the pre-generated metabolic maps provided by the Escher
visualization tool were used. On the other hand, we designed our own visualization tool
that uses Graphviz to generate metabolic maps in an automatic way.

Differential reaction expression results revealed alterations in different metabolic sub-
systems when comparing healthy and cancerous renal cells. In particular, such alterations
were present in specific parts of the amino-acid, carbohydrate and retinol metabolisms.

In addition to the above mentioned work, we also developed an open-source software
toolkit called Flux Capacitor, which incorporates many features useful to apply FBA
techniques. The toolkit was used to compute the results of all of the experiments reported
in this thesis.
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CHAPTER 1
INTRODUCTION

1.1 Systems Biology

1.1.1 Introduction
The extraordinary successes of the Human Genome Project and ensuing technological ad-
vancements, particularly in sequencing, microarray-based gene expression profiling and
mass spectrometry, have promoted a deep transformation of the biological and medical
sciences. The key aspect of this transformation is a shift toward a more holistic approach
to biology and the emergence of the field of systems biology.

Systems biology is the scientific discipline that studies the systemic properties and dy-
namic interactions in a biological object, be it a cell, an organism, a virus, or an infected
host, in a qualitative and quantitative manner and by combining experimental studies
with mathematical modeling (Klipp et al. 2016). Systems biology uses biochemical net-
works as a main concept, investigating its components and interactions with the help of
experimental high-throughput techniques and dedicated small-scale investigations. The
acquired knowledge is later integrated into networks and dynamical simulation models.

Systems biology heavily relies on mathematical models as a tool to explain biological
phenomena. In this context, a model is an abstract representation of biological objects or
processes with the purpose of better understand or simulate their properties and behavior.
Models can take many different forms, from graphical representations to mathematical
formulas. Typically, models are based on well-established physical laws that justify their
general form (e.g. thermodynamical laws). The crucial aspect of a given model, no matter
how it was defined, is its ability to accurately answer the biological questions under study.

Defining a biological model involves characterizing a whole range of elements, in-
cluding its scope; its quantitative aspects expressed in terms of variables, parameters and
constants; the dynamical behavior of the system being studied; the different configura-
tions or states of the system variables that are relevant for the model scope; the set of
stationary (or steady) states, which are those where all variables remain constant in time;
etc.

As it has already been mentioned, networks constitute a central concept in systems
biology. Systems biology uses networks to study topics such as protein to protein inter-
actions, protein to RNA interactions, metabolism or signaling pathways. Networks are
represented by graphs composed of nodes that are connected by edges.

According to Klipp et al. 2016, three different kind of models are used in the con-
text of systems biology: i) network-based models, ii) rule-based models and iii) statistic
models. Network-based models describe and analyze properties, states or dynamics of
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Chapter 1. Introduction

networks. Frequently used models that fall into this category would be systems of ordi-
nary differential equations to model biochemical reaction networks, or Petri nets to study
metabolism. Rule-based models are composed of elements whose state is determined by
a set of rules. Examples of this kind of models would be cellular automata, composed of a
grid of cells whose states are updated based on rules depending on the states of the neigh-
boring cells, or the more complex agent-based models, where each model entity (such as
a protein or cell) is considered as an autonomous agent governed by its own rules. The
third kind of biological models are those based on statistics. These models are receiving
increasing attention in the field of systems biology, due to the massive data production
that characterizes the omic technologies. Statistical models are useful in this context due
to their ability to establish relations between observed data and to guide the analysis nec-
essary to understand the underlying structures of the system under study. Examples of
statistical models applied in systems biology are linear regression or analysis of variance
(ANOVA).

One important task developed in systems biology is to integrate data derived from
the application of high-throughput techniques. These techniques have evolved rapidly
during the last few years, generating a huge amount of information. Combining infor-
mation obtained from different sources and datasets can be useful for different research
purposes such as biomarker identification, drug discovery or the study of complex disease
conditions. Data combination approaches often involve sophisticated analysis and data
handling techniques, including data normalization, quality control, statistical analysis or
visualization techniques, just to name a few.

Another important element of systems biology is the study of model organisms. Model
organisms are species that have become extremely useful for scientific research. Impor-
tant factors that differentiate model organisms from the rest are: culture conditions (ease
of handling in laboratory environments), cost, size (smaller organisms can be studied in a
higher number), lifespan (short lifespans allow an easier study of aging), etc. The main
motivation behind the study of a specific model organism is the possibility to export the
biological findings made for such organism to other species or even humans. Model or-
ganisms range from prokaryotic organisms to single and multicellular eukariotic species,
up to mammals.

1.1.2 Systems Biology and Bioinformatics
Systems biology is rapidly gaining widespread interest from the research community dur-
ing the last years. The emphasis of this discipline on the word systems is motivated by the
lack of knowledge about how the different components of biochemical systems, that are
often known and described in meticulous detail in an isolated manner, interact with each
other to produce the spatial and temporal behavior that constitutes the hallmark of bio-
chemical systems (Kitano 2002). On the other hand, bioinformatics originated from the
necessity to provide automatic tools to handle larger and larger amounts of biological data.
According to Likić et al. 2010, bioinformatics continues to grow as a discipline in this im-
portant role, but is also increasingly merging and contributing to systems approaches by
creating new tools useful to integrate existing knowledge about individual biological ob-
jects. Examples of these contributions would be biological databases, modeling tools,
tools for network visualization, file formats for biological information exchange, etc. As
a result, the crucial role bioinformatics plays in modern systems biology puts mathemati-
cal and computational sciences at the same level as analytical and experimental biology.
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1.2. Modeling Metabolism

1.2 Modeling Metabolism
Metabolism constitutes one important example of the biochemical networks studied by
the discipline of systems biology. Metabolism is the whole set of biochemical reac-
tions occurring inside the cells of a living organism. Such biochemical reactions convert
molecules or reactants into different products required to run cellular processes. Reactants
are transformed into products in a sequence of steps that is referred to as a metabolic path-
way. At each individual pathway step, a chemical reaction catalyzed by enzymes takes
the products obtained in the previous step and produces new intermediate molecules that
will constitute the reactants of the next step. Both the reactants and the products of each
step receive the name of metabolites.

Metabolism can be studied by means of the above mentioned network-based models
provided by the systems biology discipline. Arguably, the most popular of such models
is based on the use of systems of ordinary differential equations (ODEs). ODEs allow
to study the dynamic properties of metabolism due to the introduction of a continuous
time axis in their formulation. Another well known systems biology framework to study
metabolism assumes that system behavior is static and does not depend on time. Under
these circumstances, flux balance analysis (FBA) can be applied. FBA is a mathematical
approach for analyzing the flow of metabolites through a metabolic network. FBA re-
moves the time axis considered by the ODE framework and replace it by the concept of
steady state, where the values of the variables describing the system are fixed but subject
to certain constraints.

In spite of the fact that the ODE framework allows us to obtain very accurate metabolic
models, this kind of models requires detailed information about quantitative aspects of
the involved biochemical reactions, such as kinetic constants, or enzyme intracellular
concentration limits (Domach et al. 1984; D. Fell 1996). The lack of this information
restricts the applicability of the ODE framework to small-scale systems. In contrast, FBA
solves this problem by relying solely on simple physical constraints, enabling the analysis
of large-scale metabolic networks (Price et al. 2003).

One challenge that arises when modeling metabolism is how to take into account
the external and internal forces that influence the behavior of metabolic networks. One
example of this would be the available amount of nutrients. Another example, particu-
larly important from the perspective of this thesis, is gene expression. It is still not well
understood how metabolism works for each specific human tissue (Shlomi et al. 2008),
and previous studies demonstrate that changes in gene and protein expression levels play
a major role in controlling tissue-specific metabolic functions (Son et al. 2005; Yanai
et al. 2005; Levine et al. 2006). Therefore, successfully integrating transcriptomic and
metabolic information can constitute one step forward to a more accurate modeling of
human metabolism.

The study of human metabolism is experiencing an increasing interest from the re-
search community due to the fact that metabolic diseases such as diabetes and obesity
have become a major source of morbidity and mortality (Lanpher et al. 2006; Muoio
and Newgard 2006). Another example of disease that is being studied under a metabolic
perspective is cancer, since it has been demonstrated that the growth and survival of can-
cerous cells, and even their malignant transformation from healthy ones require specific
alterations in normal cell metabolism (Cairns et al. 2011). As a result, accurately studying
human metabolism by means of systems biology techniques holds the promise of greatly
advancing our understanding of widespread diseases.

3



Chapter 1. Introduction

1.3 MSc Thesis Scope
This work is devoted to the study, under a systems biology perspective, of human metab-
olism and in particular, of the metabolism of cancer. For this purpose, we will integrate
transcriptomic and metabolic information existing in well known databases by means of
FBA techniques, which are used here due to their ability to model complex metabolic
networks, as it was explained in the previous section. The resulting information will
be statistically analyzed and graphically represented, allowing us to extract conclusions
about the differences between normal and cancer metabolism.

The rest of this document is organized as follows: Chapter 2 enumerates the scientific
and technologic goals pursued in this work. Chapter 3 describes common techniques for
gene expression profiling that will be useful to obtain integrated models of metabolism.
Chapter 4 explains the foundations of the FBA framework and other related approaches.
Chapter 5 discusses different alternatives to visualize the results produced as a result of the
application of FBA. Chapter 6 describes some databases relevant for FBA-based modeling
of metabolism. Chapter 7 shows the results of the experiments we carried out. Chapter 8
explains the conclusions and future work. Finally, Appendix A describes the open-source
software that has been developed for this MSc Thesis.

4



CHAPTER 2
SCIENTIFIC AND TECHNOLOGIC GOALS

THIS MSc Thesis is focused on the application of FBA techniques to the study of
human metabolism, with a particular emphasis on cancer metabolism. We define

the following list of scientific ([SC]) and technologic ([TC]) goals:

• Integration of transcriptomic and metabolic information using FBA [SC]

Data integration constitutes one key task within the discipline of systems biology.
When studying metabolism, there are many factors that may be affecting its be-
havior. As it was explained in Section 1.2, one important example of these factors
is gene expression, due to the essential role it plays in controlling tissue-specific
metabolic functions. We will study and implement techniques to integrate tran-
scriptomic and metabolic information so as to be able to study human metabolism
accounting for the important influence of gene expression.

• Review of available software for FBA [TC]

The application of FBA techniques requires sophisticated mathematical tools, com-
monly referred to as solvers, that calculate the metabolite flows of a metabolic net-
work given a set of constraints. There are numerous software implementations of
such solvers, ranging from commercial to free and open-source software, with var-
ied capabilities and limitations. Here we evaluate and apply some of them so as to
determine the most appropriate one taking into account the goals of this thesis.

• Statistical analysis of FBA results [SC]

In order to rigorously evaluate the differences between normal and cancer cell me-
tabolism, it will be necessary to perform statistical significance tests over the results
derived from the application of FBA techniques. The specific method used for such
tests will be carefully selected taking into account the nature of the data under study.

• Visualization techniques for FBA results [SC]

Visualization constitutes an important step required to extract conclusions from
FBA data. Typically, the metabolic network under study is graphically represented,
showing the fluxes associated to the different reactions. However, creating these
graphical representations is not trivial when large-scale metabolic networks are an-
alyzed, due to the huge number of elements that compose such networks. Here we
study some existing tools and methods than can be applied to obtain easily inter-
pretable representations of the data derived from FBA.
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Chapter 2. Scientific and Technologic Goals

• Comparison between normal and cancer metabolism [SC]

Statistical analysis and graphical representations of FBA results will be used in
combination with previously existing biological knowledge so as to arrive to mean-
ingful conclusions regarding the differences between normal and cancer metabo-
lism.

• Development of open-source software for FBA [TC]

The development of open-source software in a research context is useful to speed up
the propagation of new ideas and results throughout the scientific community. For
this purpose, we have created a free and open-source software toolkit implementing
the different techniques tested in this work.
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CHAPTER 3
GENE EXPRESSION PROFILING

GENE expression constitutes one key factor affecting metabolic behavior as it was
explained in Section 1.2. In this chapter we describe two well known techniques

for gene expression profiling, namely, microarray-based profiling and RNA sequencing.
The transcriptomic data derived from these two techniques will be useful to build complex
metabolic models, as it is later explained in Chapter 4.

3.1 Microarray-Based Profiling

3.1.1 Introduction
A DNA microarray or DNA chip is a solid surface where there is attached a collection of
DNA spots. Each DNA spot contains a microscopic quantity of a specific DNA sequence,
known as probes. Such probes can be a short section of a gene or other DNA element
that are used to hybridize a nucleic acid sample. Hybridization is a process by which
two single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) molecules
are combined in a single double-stranded molecule. Typically, microarray technology
hybridize the probe content with cDNA, a DNA molecule obtained from messenger RNA
(mRNA) using reverse transcriptase.

DNA microarrays constitute a high-throughput method for gene expression profil-
ing (DeRisi et al. 1997). In a gene expression experiment using DNA chips, the expression
levels of thousands of genes are simultaneously measured to study how certain diseases,
treatments, developmental stages, etc. affect cellular activity.

A typical DNA microarray experiment involves the following sequence of steps:

1. Construction of the chip: this step is usually automated by means of robots and
it requires a DNA library. A DNA library is a collection of DNA fragments that is
stored and propagated in a population of micro-organisms through the process of
molecular cloning. Polymerase chain reaction or PCR (Saiki et al. 1988) is then
used to amplify individual clones and spotted in a regular pattern on the microarray
surface typically made of plastic, glass or silicon. The DNA fragments that com-
pose the library are often selected based on the so-called ESTs (expressed sequence
tags) present in public databases. ESTs are short subsequences of cDNAS that are
commonly used to identify gene transcripts.

2. RNA preparation: DNA chips work with RNA extracted from two different sam-
ples to be compared. Hence, the RNA samples should be first extracted before
continuing with the experiment.
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3. RNA transcription: RNA is transcribed into cDNA by means of reverse transcrip-
tase and labeled with a fluorescent dye. The dyes for the two samples emit light at
different wavelengths. Typically, red and green dyes are used.

4. cDNA hybridization: the cDNAs are later incubated with the chip, where they
hybridize to the spot that contains the complementary fragment.

5. Signal scanning: after washing, the ratio of the fluorescence intensities for red and
green are measured and displayed as false color picture. Spots of pure red or green
indicate a large excess of RNA from one or the other sample, while yellow spots
show that the amount of this specific RNA was roughly equal in both samples. Very
low amounts of both RNA samples result in dark spots.

6. Signal quantization and analysis: the ratios obtained during the previous step can
be quantified numerically and used for further analyses.

3.1.2 Bioinformatics Pipeline for Microarrays
Once a typical microarray experiment like that described above has been performed, an
additional set of bioinformatic processes is executed so as to extract biological informa-
tion from the microarray data. The most common goal of this is to study differential
expression of genes between samples.

Overview

Gentleman, Carey, Huber, Irizarry, et al. 2005 provide a very detailed guide about a
whole set of bioinformatic tools and analyses usually applied over microarray data. Here
we group these tasks into three different steps:

1. Data preprocessing: raw microarray data are the intensities read for each probe.
In practice, these data is heavily manipulated before obtaining the genomic-level
measurements that are commonly used in gene expression studies. This procedure
is commonly referred to as preprocessing.

2. Differential expression testing: once the probe intensities have been normalized,
the resulting numerical values can be used to study if there are differences in gene
expression across the different samples involved in the experimentation.

3. Systems biology analyses: the application of systems biology techniques over the
microarray data can provide additional insight with respect to differential expres-
sion testing. One of the defining aspects of the applied techniques is its integrative
character, where the expression data is combined with other sources of biological
information.

Pipeline Details and Software Tools

Once the microarray pipeline for DNA chips has been introduced, we explain some addi-
tional details of it along with existing software able to solve the required tasks.

Among the available software options to process microarray data, there is one that
have gained substantial popularity during the last years. This option is the Bioconductor
open-source project for the analysis and comprehension of genomic data (Huber et al.
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2015). Bioconductor is rooted in the open-source statistical computing environment R (R
Core Team 2015) and offers a wide range of bioinformatic tools, including a whole set of
them for microarray data processing.

According to Gentleman, Carey, Huber, Irizarry, et al. 2005, data preprocessing can
be divided into 6 tasks: image analysis, data import, background adjustment, normaliza-
tion, summarization, and quality assessment. Image analysis converts the pixel intensities
in the scanned images into probe-level data. Data import methods are needed to collect
information that is often scattered across a number of files or database tables. Background
adjustment is required due to the fact that part of the measured probe intensities are due
to non-specific hybridization and the noise in the optical detection system. Normalization
enables direct comparison of measurements from different array hybridizations due to
different sources of variation. In some platforms, summarization is needed because tran-
scripts are represented by multiple probes. Finally, Quality assessment is important since
it detects divergent measurements beyond the reasonable level of random fluctuations,
allowing us to discard such measurements in subsequent analyses.

Bioconductor does not offer image processing software. Instead, it assumes that we
start with numeric probe-level data as input. Such data is typically represented as a rect-
angular matrix. In addition to this, probes are annotated with information selected by the
manufacturer of the chip. This information typically consists of a sequence identifier that
can be mapped to genomic databases. The chip designers also provide data describing
the array layout, which includes the physical position of each probe in the array. On the
other hand, Bioconductor also expects information describing the samples involved in the
experiment.

The most commonly used DNA chips for gene expression profiling are the Affymetrix
GeneChip arrays. These arrays use short oligonucleotides to probe for genes in an RNA
sample. Bioconductor provides the affy library (Gautier et al. 2004) to deal with data
derived from Affymetrix chips, including procedures for data importing, background ad-
justment, normalization, summarization and quality control. Alternative and well known
packages complementing the functionality provided by affy are also available, such as
the gcrma package (Wu and Irizarry 2016) for background adjustment or the affyPLM
package (Bolstad et al. 2005), which contains procedures useful for quality control.

Differential expression testing typically involves one or two group t-test comparisons,
multiple group ANOVA and some additional and more general linear model tests. Despite
the fact that the linear assumption is not always accurate, it is often applied because of
the easier interpretability of the resulting models. All of the above mentioned tests are
parametric. Alternatively, it is possible to use non-parametric tests, such as the Mann-
Whitney’s U test or permutation tests. Parametric tests usually have a higher power if
the underlying model assumptions (e.g. normality in the case of the t-test) are at least
approximately fulfilled. Non-parametric tests have the advantage of making less strong
assumptions on the underlying data distribution. In many microarray studies however, a
small sample size leads to insufficient power for non-parametric tests (Gentleman, Carey,
Huber, Irizarry, et al. 2005).

Due to the lack of knowledge regarding coregulation of genes, statistical tests are
computed for each gene separately. This is the standard approach due to its straightfor-
ward application. However, testing genes separately has important drawbacks, being the
most important of them the fact that the large number of hypothesis tests that are carried
out potentially leads to an equally large number of falsely significant results. To tackle
this problem, multiple testing procedures can be applied to assess the overall significance
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of the results for a set of hypothesis tests. For this purpose, they focus on specificity by
controlling the false positive error rates such as the family-wise error rate or the false
discovery rate (Dudoit et al. 2003).

Bioconductor incorporates different packages for differential expression testing. For
instance, combining the genefilter package (Gentleman, Carey, Huber, and Hahne 2016)
with the multtest package (Pollard et al. 2005) it is possible to conduct a set of t-tests
adjusting the p-values in a way that the false positive error rate is controlled.

Finally, systems biology tools can be used to gain further biological insight over the
microarray data. One typically applied resource is Gene Onthology (GO) (Ashburner et
al. 2000). GO provides an onthology of defined terms representing gene product proper-
ties across all species. One of the main uses of GO is to perform enrichment analysis on
specific gene sets, such as those that are up-regulated according to the results of differen-
tial expression studies. For this purpose, Bioconductor provides the GSEA package (Mor-
gan et al. 2016).

3.2 RNA Sequencing

3.2.1 Introduction
In spite of the great usefulness that microarray technology has demonstrated in the past to
measure gene expression, its use is not without important disadvantages, being some of
them relevant from the systems biology perspective. One of the most severe limitations
of DNA chips is its poor dynamic range: gene expression measurement is limited by
background signal at the low end, and by signal saturation at the high end (Wang et al.
2009). This makes difficult to detect rare transcripts or highly abundant ones. Another
important limitation is their inability to detect novel transcripts due to the use of transcript-
specific probes.

The recent development of the so called next-generation sequencing (NGS) techniques
has given birth to a new technology useful for gene expression profiling called RNA se-
quencing or RNA-Seq (Wang et al. 2009; Corney 2013). NGS is a generic term used
to describe a range of modern technologies that allow us to sequence DNA and RNA
much more quickly and cheaply than the previously used Sanger technology. RNA-Seq
basically consists in the application of NGS techniques to gene expression profiling, ef-
fectively tackling some of the limitations that DNA chips present.

The process behind the RNA-Seq technique is quite simple:

1. RNA preparation: input RNA is isolated and purified.

2. RNA transcription: the RNA molecules are converted to cDNA.

3. Sequencing: the cDNA molecules, with or without amplification, are sequenced
using NGS technology. The length of the reads depends on the used sequencing
method, typically being between 30 and 400 base pairs (bps). This makes neces-
sary to break RNAs into smaller fragments. As a result, the number of counts per
transcript is proportional, not only to its expression level, but also to the transcript
length.

4. Count normalization: to be able to compare the expression levels of different
transcripts, and between libraries with different sequencing depth, the expression
level should be normalized.
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Since RNA-Seq has practically no background, its dynamic range is only limited by
the sequencing depth, successfully tackling the above mentioned range limitation prob-
lem of DNA chips. Moreover, it is also not necessary to know in advance the genomic
sequence of the specific organism to carry out a transcriptomic study, solving another
important disadvantage of microarrays.

3.2.2 Bioinformatics Pipeline for RNA-Seq
After introducing the RNA-Seq technique, we devote this section to describe the bioin-
formatics processes and tools that are usually involved in the analysis of RNA-Seq data.
In spite of the fact that RNA-Seq can be used for different purposes, such as the detec-
tion of alternative splicing or the study of single nucleotide polymorphisms, the primary
objective of many biological studies is gene expression profiling between samples.

Overview

Oshlack et al. 2010 provide a detailed description of the typical RNA-Seq pipeline for
differential expression. This pipeline is composed of 5 steps:

1. Mapping: this task tries to find the unique location where a short read is identical
to a given reference genome.

2. Summarization: after obtaining the genomic locations for as many reads as possi-
ble, the summarization step aggregates the reads over some biologically meaningful
unit, such as exons, transcripts or genes.

3. Normalization: normalization allows to accurately compare expression levels be-
tween samples. It has been shown that normalization constitutes an essential step
in the analysis of differential expression.

4. Differential expression testing: genes that have changed significantly in abun-
dance across experimental conditions are highlighted in this step. This usually in-
volves performing statistical testing between samples of interest.

5. Systems biology analyses: as it was explained for microarray data in Section 3.1.2,
the output of differential expression testing can be used to discover new biological
knowledge. Again, this process is typically carried out by integrating information
from different sources, since this is the hallmark of systems biology approaches.

Pipeline Details and Software Tools

Each step of the RNA-Seq pipeline described above can be executed by means of pre-
viously existing software tools. In this section we explain additional details of the tasks
executed in the pipeline as well as some software tools relevant for such tasks.

Mapping can be a computationally demanding task due to the fact that the reference
genome is never a perfect representation of the actual biological source of RNA being se-
quenced. Allowing a greater degree of fuzziness during mapping also increase the com-
putational complexity of the algorithm. Regular mappers execute a first pass to heuris-
tically find a reduced list of candidate locations followed by a more detailed evaluation
using a complex alignment algorithm at local level. One way to carry out this initial
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heuristic pass is the use of the Burrows Wheeler transform, as it is done in the BOWTIE
aligner (Langmead, Trapnell, et al. 2009). BOWTIE constitutes an example of a gen-
eral purpose aligner. However, general aligners are not enough to address some common
mapping problems, such as those situations where a given read spans exon boundaries.
Under these circumstances, the read will not be mapped against the reference. There exist
tools that allow us to solve this problem, such as the TopHat mapper (Trapnell, Pachter,
et al. 2009), which relies on the alignment results obtained by means of BOWTIE so as
to perform an analysis of the splice junctions between exons.

The output of the aligner tools should be processed so as to quantify the obtained
reads. This process can be carried out in different ways, being the simplest one to count
the number of reads overlapping the exons in a gene. However, one problem with this ap-
proach is that a significant proportion of reads map to regions outside annotated exons.
Because of this, a number of alternative summarization techniques have been proposed.
One example of this would be to only take into account those reads that map to coding
sequences, as it is implemented in the above mentioned Tophat aligner. Another strategy
is incorporated in the Cufflinks tool (Trapnell, Williams, et al. 2010), where the junc-
tion reads are included in the summarization or used to model the abundance of splicing
isoforms.

Summarized counts should be normalized as a previous step to carry out further anal-
yses. Normalization is required due to the fact that, given the same expression level,
longer transcripts have higher read counts. To solve this problem, a common normal-
ization method divides the summarized counts by the length of the gene (Mortazavi et
al. 2008). This technique can be refined by taking into account the number of mapped
reads, obtaining the RPKM (reads per kilobase of exon model per million mapped reads)
measure (Mortazavi et al. 2008). These normalization techniques are incorporated in the
ERANGE package.

After normalization, the data is ready to perform differential expression studies. The
applied techniques differ from those used for microarray data due to their continuous
nature in contrast to the discrete counts provided by RNA-Seq. Existing methods typi-
cally assume that RNA-Seq counts follow a Poisson distribution. This decision is based
on empirical evidence presented in (Marioni et al. 2008). However, it has also been
demonstrated that the Poisson assumption fails at accurately capturing biological vari-
ability (Robinson and Smyth 2007; Langmead, Hansen, et al. 2010). To address this
problem, the Poisson distribution is replaced by a negative binomial distribution in the
edgeR package (Robinson, McCarthy, et al. 2010).

Systems biology tools can also be useful when applied to RNA-Seq data in the same
way as it was explained for microarray data. Again, one common analysis that can be
carried out consists in the integration of gene expression data with the terms contained in
GO. This has been standard practice when working with microarrays, but its application to
RNA-Seq data is more difficult due to the gene length bias explained above. To solve this
problem, the GOseq tool (Young et al. 2010) can be used. GOseq has been specifically
developed for RNA-Seq data and is able to incorporate length or total count bias into gene
set tests.
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CHAPTER 4
FLUX BALANCE ANALYSIS OF METABOLISM

METABOLISM can be modeled as a biochemical network whose structure plays a
fundamental role to define the quantitative and qualitative aspects of the pheno-

type of living organisms. This chapter is devoted to introduce one major application of
systems biology useful for the structural analysis of metabolic networks: flux balance
analysis (FBA).

4.1 Metabolic Network Reconstructions
Metabolic network reconstructions have become increasingly important for studying the
systems biology of metabolism. The number of organisms with available metabolic re-
constructions is growing at a similar pace to whole genome sequencing (Thiele and Pals-
son 2010). Such metabolic reconstructions started to develop during the previous decade
as structured knowledge-bases abstracting relevant information of the biochemical pro-
cesses taking place with given target organisms. After being built, the reconstructions can
be transformed into mathematical models for its use in a wide range of computational
biological studies.

The quality of existing metabolic reconstructions varies considerably due to the dif-
ferent amounts of available data and also because of the previous lack of a well defined
methodology to guide the entire process. To solve this problem, Thiele and Palsson 2010
proposed a protocol composed of 5 stages that are briefly described here:

1. Creation of a draft reconstruction: a draft reconstruction based on the genome
annotation of the target organism and biochemical databases is generated. This
draft reconstruction is created in an automatic manner and contains a collection of
genome encoded metabolic functions, some of which may be falsely included while
other ones are missing.

2. Refinement of manual reconstruction: the second stage focuses on curation and
refinement of the network content. Specifically, the metabolic functions and re-
actions previously collected are individually evaluated against organism-specific
literature.

3. Conversion from reconstruction to mathematical model: the conversion requires
three steps: i) the network reaction list is converted to a stoichiometric matrix
S, where the columns represent the network reactions and the rows the network
metabolites, the substrates in a reaction have negative coefficients while products
have positive value; ii) definition of system boundaries: for all metabolites that can
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be consumed or secreted by the target of a cell, a so-called exchange reaction needs
to be added; iii) addition of constraints so as to obtain a condition-specific model
(this will be further discussed in Sections 4.4, 4.5 and 4.6.

4. Network evaluation: this process consists of network verification, evaluation and
validation. Common errors in metabolic networks include wrong reaction con-
straints, missing transport or exchange reactions, cofactors that cannot be consumed
or produced, etc. The result of this evaluation allows to identify the so called net-
work gaps, or missing metabolic functions in the reconstruction. Such gaps are
removed by partially repeating stages 2 and 3.

5. Prospective use: After completing the previous stages, it is possible to start using
the reconstruction in a prospective manner.

4.2 Systems Biology Markup Language

4.2.1 Introduction
The necessity of information standards to share systems biology models has greatly in-
creased during the last years within the research community. The lack of such infor-
mation sharing standards contrasts with the wide variety of computational tools used to
carry out systems biology tasks. This software diversity has been the cause of numerous
problems (Hucka et al. 2003): different and complementary tools use models in different
formats, making multiple re-encodings necessary; discontinued development of existing
tools make previously developed models unusable; multiplicity of modeling environments
negatively impact the reproducibility of research because examining, testing and reusing
such environments may not be straightforward, etc.

To address this problem, a forum titled Software Platforms for Systems Biology was
formed. This forum initially included representatives from teams developing different
software packages, such as BioSpice, Cellerator, DBsolve, etc. (see (Hucka et al. 2003)
for an exhaustive list). The forum decided to develop a simple, XML-based language for
representing and exchanging models between simulation and analysis tools: the Systems
Biology Markup Language (SBML). The basis of SBML is called SBML Level 1. SBML
Level 1 is the result of analyzing common features in representation languages used by
different systems biology simulators, and comprises the minimal information required to
describe non-spatial biochemical models. SBML is open to further extensions (termed
levels) that will add new features requested and prioritized by the SBML community.

4.2.2 Overview of SBML Level 1
As stated by Hucka et al. 2003, a chemical reaction can be broken down into certain
conceptual elements, namely, reactant species, product species, reactions, stoichiometries,
rate laws and parameters in the rate laws. Analyzing or simulating a network of reactions
requires to make explicit additional components, including compartments for the species
and units on the various quantities. A model expressed in SBML format consists of lists
of one or more of such components (Hucka et al. 2003):

• Compartment: represents a container of finite volume where the reactions take
place.
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• Species: a specie is a chemical substance or entity taking part in a reaction.

• Reaction: is a statement describing some transformation, transport or binding pro-
cess affecting to one or more species. Reactions have associated rate laws describ-
ing at which pace they take place.

• Parameter: a parameter is a quantity that has a symbolic name.

• Unit definition: unit definitions are names for units involved in the expression of
quantities of a model.

• Rule: a rule is a mathematical expression that is added to the model equations built
from the set of reactions.

Typically, systems biology tools read models expressed in SBML and translates them
into their internal representation. The skeleton of an SBML file as well as a sample model
exploiting the capabilities of the format is explained in (Hucka et al. 2003).

4.3 Mathematical Foundations of FBA
FBA is a systems biology method that uses mathematical optimization to study biochemi-
cal networks. In this section we briefly introduce two mathematical tools belonging to the
operations research discipline that lay the foundations of FBA, namely, linear program-
ming and integer programminga.

4.3.1 Linear Programming
Linear programming (LP) uses a mathematical model to describe the problem of interest.
The word linear refers to the fact that, in this model, all the mathematical functions used
are linear functions. On the other hand, the word programming has no relation with
computer programming but it is a synonym for planning. As a result, LP involves the
planning of activities to obtain an optimal result.

The most common type of application of LP involves allocating resources to activities.
The available amount of each resource is limited, so they must be carefully allocated.
The allocation process involves deciding the levels of the activities that achieve the best
possible value of the overall measure of performance.

Notation

Certain symbols are commonly used to denote the components of the linear programming
model. Such symbols are described below:

Z: value of overall measure of performance.

xj: level of activity j (for j ∈ {1, 2, ..., n}).

cj: increase in Z that would result from each unit increase in level of activity j.

aTo create the content of this section we have used the excellent reference book on operations research
written by Hillier and Lieberman 1986.
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bi: amount of resource i that is available for allocation to activities (for i ∈ {1, 2, ...,m}).

aij: amount of resource i consumed by each unit of activity j.

The LP problem consists in making decisions about the level of the activities, so
x1, x2, ..., xn are called the decision variables.

Standard Form of the Model

After introducing the required notation, we are ready to define the standard form of the
LP model, where the values of the variables x1, x2, ..., xn are to be decided so as to:

Maximize Z = c1x1 + c2x2 + ...+ cnxn

subject to the restrictions

a11x1 + a12x1 +...+ a1nx1 ≤b1
a21x2 + a22x2 +...+ a2nx2 ≤b2

...
am1xn + am2xn+...+ amnxn≤bm

and
x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0

The previous formulation receives the name of standard form for the LP problem.
From this point it is possible to introduce common LP terminology:

• Objective function: the function being maximized (Z).

• Constraints: the restrictions mentioned above are commonly referred to as con-
straints.

• Functional constraints: the first m constraints of the standard model.

• Nonnegativity constraints: the last row of constraints of the model in its standard
form.

Sometimes, a specific problem does not perfectly fit into the standard form (e.g. the
objective function should be minimized instead of maximized), but it is possible to make
it fit after some specific transformations (see (Hillier and Lieberman 1986) for additional
details).

Terminology for Solutions of the Model

In LP, any combination of values of the decision variables is called a solution, no matter
if it is desirable or even allowable. Solutions are classified according certain adjectives:

• Feasible solution: a solution where all the constraints are satisfied.

• Infeasible solution: a solution where at least one of the constraints is violated. It
is possible that a problem has no feasible solutions.
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• Optimal solution: a feasible solution that has the most favorable value of the objec-
tive function. The most favorable value will be the largest if Z is to be maximized
and the smallest if it is to be minimized. A problem may have multiple optimal so-
lutions. Alternatively, it is possible that a problem has no optimal solutions because
there is not any feasible solution or because the constraints do not prevent improv-
ing the value of the objective function indefinitely (in this case, we say we have an
unbounded Z or an unbounded objective).

Solving Linear Programming Problems

After introducing the standard form of LP problems and some basic terminology, we are
prepared to briefly describe how to find solutions for them. The most common technique
for this purpose is the so-called simplex method.

The simplex method is an algebraic procedure that operates on linear programs in
standard form. Such procedure basically consists on solving systems of equations. It can
be demonstrated that the system of equations for a given problem determines a polytope
as a feasible region. A feasible region is the set of points for a given problem that satisfy
all of its constraints. The simplex algorithm begins at a starting vertex and moves along
the edges of the polytope until the vertex of the optimum solution is reached.

The simplex algorithm is able to obtain the optimal solution very efficiently for a wide
range of LP problems. However, there are some situations for which the algorithm may
render unusable due to the necessity of executing a number of calculations that grows
exponentially with problem size. Under these circumstances, other algorithms such as
the so-called interior point algorithms can be used. Interior point algorithms differ from
the simplex method in that they find their solution by moving through the interior of the
polytope representing the feasible region instead of through its vertices.

Assumptions of Linear Programming

As it has been explained, the LP model allows to find the values of the decision variables
that maximize a linear objective function subject to linear constraints. These mathematical
properties imply that certain assumptions must hold about the activities and data of the
problem being modeled. Here we provide a list of such assumptions:

• Proportionality: the contribution of each activity to the value of the objective func-
tion is proportional to the level of the activity.

• Additivity: every function in an LP model is the sum of the individual contributions
of the respective activities.

• Divisibility: Decision variables in an LP model are allowed to have any values, in-
cluding noninteger values, that satisfy the functional and nonnegativity constraints.

• Certainty: The value assigned to each parameter of a linear programming model is
assumed to be a known constant.

4.3.2 Integer Programming
There are several problems that can be successfully framed as linear programming prob-
lems. However, one key limitation that hinders the applicability of the LP model is the
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above mentioned divisibility assumption, since there are also many practical situations
where the decision variables only make sense if they have integer values.

Terminology

When the decision variables of the LP problem are forced to be integers, then we need
to solve an integer linear programming problem, or simply an integer programming (IP)
problem. To solve this kind of problems, we apply the linear programming model adding
the restriction that the decision variables are integer. If only some of them are integer, this
model is referred to as mixed integer programming (MIP).

One particular case of integer programming occurs when the decision variables corre-
spond to yes-or-no decisions. We can represent this mathematically by means of decision
variables xj that take a zero value to represent no, and a value equal to one to represent
yes. This kind of variables are called binary variables and the problems that contain them,
binary integer problems (BIPs).

Solving Integer Programming Problems

LP problems can be efficiently solved using currently existing techniques, such as the sim-
plex method. Due to the fact that IP problems are basically LP problems with a reduced
set of possible solutions, it may seem that IP solutions are easier to find. Unfortunately,
this is far from being true. On the one hand, despite the fact that IP problems are guaran-
teed to have just a finite number of possible solutions, this does not mean that the problem
is easily solvable, since a finite number can be astronomically large. For instance, a BIP
problem with n variables has 2n possible solutions, if n is equal to 30, then the problem
would have more than 1 billion solutions. On the other hand, the removal of noninteger
solutions from the LP problem makes more difficult to guarantee that there is an optimal
solution for it. It is precisely the existence of this guarantee what constitutes the key to
the remarkable efficiency of the simplex method. Because of that, IP algorithms are typi-
cally based on the use of LP solvers, such as the simplex method. These solvers are used
to find solutions for portions of the IP problem that can be related to the corresponding
LP problem. Given an IP problem, the corresponding LP problem is referred to as the LP
relaxation.

One main approach to IP problem solving is the use of the so-called branch-and-
bound algorithms. These algorithms are able to efficiently explore the potentially huge
set of feasible solutions. The approach works by partitioning the entire set of feasible
solutions into smaller and smaller subsets that are organized in branches of a tree-like
data structure. When exploring the tree of possible solutions, for a given solution subset
the algorithm calculates bounds for the best solution that can be reached. The subset is
discarded if its bounds indicate that it cannot possibly contains an optimal solution for the
problem. The bounding process is typically performed by finding the optimal solutions
for the LP relaxation of the IP problem.

4.4 Flux Balance Analysis
After describing the basic concepts of linear and integer programming, we are ready to
present the FBA technique, which constitutes the main tool used in this thesis to study
human metabolism.
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4.4.1 Overview
FBA (D. A. Fell and Small 1986) is a widely used approach for studying genome-scale
metabolic network reconstructions (for more details about such reconstructions, see Sec-
tion 4.1). For this purpose, a mathematical model of the reconstruction is built and later
used to find answers to specific biological questions. In contrast to the traditional ap-
proach to model metabolism based on ordinary differential equations, FBA uses very
little information about kinetic parameters and metabolite concentrations. The words flux
balance refer to one of the two basic assumptions made by the model. In particular, that
the flow rates (or fluxes) of any compound being produced must be equal to the total
amount being consumed when the system is in a steady state. The second assumption is
that evolution has operated on the metabolism of the organism being studied, optimizing
some biological goal, such as optimal growth or conservation of resources. When these
two assumptions are put together, metabolism can be studied by means of mathematical
optimization tools (and more specifically, using LP or IP solving methods as it will be
explained in the following section).

According to Orth et al. 2010, the formulation of an FBA problem involves 5 different
steps:

1. Obtain metabolic network reconstruction: the metabolic network reconstruction
produces a list of stoichiometrically balanced biochemical reactions. Cell growth
is typically incorporated into the reconstruction with a biomass reaction, which
simulates metabolites consumed during biomass production. Additionally, the flow
of metabolites in and out of the cell is represented as exchange reactions (examples
of such metabolites are glucose and oxygen).

2. Represent reactions and constraints mathematically: a numerical matrix incor-
porating the stoichiometric coefficients of each reaction is generated.

3. Obtain set of linear equations: given the stoichiometric matrix, the steady state
assumption determines a set of linear equations (more on this in the next section).

4. Define objective function: the mathematical model of metabolism is completed by
adding an objective function related to a certain biological aspect of the cell that it
is assumed to have been optimized through evolution. One example of that is the
growth rate.

5. Calculate fluxes: mathematical optimization techniques are used to identify a flux
distribution that optimizes the objective function.

4.4.2 Mathematical Representation of Metabolism
FBA represents metabolic networks as a stoichiometry balanced set of equations. For this
purpose, it is necessary to know the stoichiometric coefficients affecting the metabolites
involved in each reaction. These coefficients can be stored in an m × n stoichiometric
matrix, S, where m is the number of metabolites and n is the number of reactions:

S =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn
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The goal of FBA is to find the values of the fluxes for each reaction, v1, v2, ..., vn, that
maximize a certain objective function such as the growth rate.

If the steady state assumption is made and we also consider some additional con-
straints regarding the upper and lower bounds for flux values, then it is possible to express
the maximization problem posed by FBA as an LP problem:

Maximize Z = c1v1 + c2v2 + ...+ cnvn

subject to steady state restrictions

a11v1 + a12v1 +...+ a1nv1 =0

a21v2 + a22v2 +...+ a2nv2 =0

...
am1vn + am2vn+...+ amnvn=0

and flux range restrictions

l1 ≤ v1 ≤ u1, l2 ≤ v2 ≤ u2, ..., ln ≤ vn ≤ un

It should be noted that the previous problem is not an LP problem in standard form.
However, this difficulty can be easily addressed by making some straightforward trans-
formations (see (Hillier and Lieberman 1986) for more details).

Alternatively, it is possible to express the above problem in a more compact manner
using matrix notation:

Maximize Z = cT · v
Subject to S · v = 0

l ≤ v ≤ u

(4.1)

where S is the stoichiometric matrix, v is the flux vector, cT is the vector of coefficients
representing the increase in the objective function per each unit of increase of the fluxesb,
and l and u are the lower and upper bounds vectors for v, respectively

4.5 Flux Variability Analysis
The optimal solution to an FBA problem is seldom unique. Moreover, for a given value
of the objective function, there may exist different combinations of values for the fluxes
that allow to achieve it. Flux variability analysis (FVA) (Mahadevan and Schilling 2003)
constitutes an extension of the standard FBA technique, where the range of values that can
take the fluxes while producing the optimal value of the objective function is calculated.

FVA is often used to determine the robustness of metabolic models in various simula-
tion conditions. It is assumed that those reactions which can support a low variability of
fluxes through them have a higher importance to an organism.

b(·)T represents the transposed matrix.
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4.5.1 FVA Formulation
After finding the solution for the LP problem given in Equation 4.1, FVA solves two
optimization problems for each flux of interest, vi:

Maximize/Minimize Z = vi

Subject to S · v = 0

cT · v ≥ γZ0

l ≤ v ≤ u

(4.2)

where Z0 is the optimal value of the objective function for the LP problem expressed by
Equation 4.1 and γ is a parameter that takes values between zero and one, allowing to
obtain flux ranges for the optimal solution γ = 1 or for a suboptimal one 0 ≤ γ < 1
(working with suboptimal solutions can be useful to speed up calculations).

One disadvantage of FVA is its computational cost when it is to be applied over the
whole set of flux variables. Specifically, a total of 2 ·n LP problems are to be solved if the
metabolic network reconstruction contains n reactions. There are some ways to address
this issue, as it is explained in the following section.

4.5.2 Improving FVA Computational Efficiency
The most straightforward strategy to reduce the time cost required by FVA is to make use
of parallelism. Since each FVA subproblem given in Equation 4.2 is independent from the
rest, it can be solved in a separated node of a multiprocessor or computer cluster, allowing
us to achieve almost linear speedups when the number of processing nodes is increased.

However, it is also possible to improve the efficiency of FVA when it is executed
on a single CPU. Gudmundsson and Thiele 2010 propose the fastFVA algorithm, which
is based on the idea that the feasible region for the whole set of LP problems given by
Equation 4.2 does not change with respect to that of the FBA problem in Equation 4.1.
This suggests that solving each FVA LP problem from scratch is highly inefficient. In
contrast, the initial FBA problem can be solved from scratch and the 2 · n subsequent
problems by starting from the last optimum solution found. The details of the technique
can be found in Algorithm 4.1.

4.6 Tissue-Specific Modeling of Metabolism Using FBA
One limitation of current genome-scale metabolic network reconstructions is the fact that
they are not tissue specific. When metabolism is modeled by means of constraint-based
modeling methods such as FBA, finding a solution to this problem is not easy because
of two reasons (Shlomi et al. 2008): first, there is not a clear objective function being
optimized as it is the case with simple microorganisms, where biomass production is
often used. Second, there is a lack of information on tissue-specific metabolite uptake
and secretion, which is essential for the application of FBA.

To tackle the challenge of creating tissue specific metabolic network models, Shlomi
et al. 2008 propose an FBA-based computational method integrating a genome-scale
metabolic reconstruction with tissue-specific gene- and protein-expression data. The mo-
tivation behind this is that gene- and protein-expression levels play a major role in control-
ling tissue-specific metabolic functions, and a strong correlation between gene expression
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input : S (stoichiometric matrix), v (flux vector), cT (objective function coefficients)
l (flux lower bounds), u (flux upper bounds), γ (gamma parameter)

output : F (set of flux ranges)
auxiliar: T (set of LP constraints), Zi (optimal objective function value at i’th iteration)

vi (optimal flux vector at i’th iteration)
1 begin
2 T := (S · v = 0) + (l ≤ v ≤ u)
3 Z0,v0 := LP_maximize_from_scratch(cT · v, T )
4 T := T + (cT · v ≥ γZ0)
5 F := ∅
6 for i := 1 to n do
7 Zmin

i ,vmin
i := LP_minimize(vi, T, v

min
i−1)

8 Zmax
i ,vmax

i := LP_maximize(vi, T, v
max
i−1 )

9 F := F + (vi, Z
min
i , Zmax

i )

Algorithm 4.1: Pseudocode for the fastFVA algorithm.

and metabolic fluxes has been found when studying microorganisms. One interesting
feature of the method is that observed expression levels are not considered as the final
determinants of enzyme activity, but as a hint for the likelihood that the specific enzyme
carries metabolic flux in its associated reactions. These hints are integrated into a global
network, allowing the model to account for metabolic flux activity that is not reflected in
the expression data (i.e. post-transcriptional regulatory effects). According to the paper
authors, this strategy eliminates the necessity of having a priori knowledge about tissue-
specific objective functions and metabolites exchanged.

4.6.1 Tissue-Specific FBA Formulation
The tissue-specific FBA formulation proposed in (Shlomi et al. 2008) starts from metabolic
network information identical to that needed for standard FBA. In particular, it requires
a stoichiometric matrix S with m metabolites and n reactions as well as lower and upper
bounds vectors, l and u, respectively, for the vector of fluxes v. The method also relies
on the definition of a set of highly expressed reactions, RH and a set of lowly expressed
reactions, RL. Using this information, the following MIP model is built:

Maximize Z =

(∑
i∈RH

(y+i + y−i ) +
∑
i∈RL

y+i

)
Subject to S · v = 0

l ≤ v ≤ u

vi + y+i (li − ε) ≥ li, i ∈ RH

vi + y−i (ui + ε) ≤ ui, i ∈ RH

li(1− y+i ) ≤ vi ≤ ui(1− y+i ), i ∈ RL

y+i , y
−
i ∈ {0, 1}

(4.3)

where boolean variables y+ and y− represent whether a given reaction is active or not for
highly expressed reactions. Specifically, a highly expressed reaction is considered to be
active if it carries a significant positive flux that is greater than a positive threshold ε, or
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lower than a significant negative flux −ε for reversible reactions (typically ε = 1). On
the other hand, for lowly expressed reactions, y+ represent if the reaction is inactive. The
optimization maximizes the number of highly expressed reactions that are active and the
number of lowly expressed reactions that are inactive.

The tissue-specific FBA method described above requires the definition of lists of
lowly and highly expressed reactions. For this purpose, the first thing to be done is to
decide if the different genes are absent or present. The strategy followed to take such
decisions varies depending on whether the expression data comes from a microarray or
an RNA-Seq experiment. It is worthy of note that the problem to be solved here is not
exactly the same as that of studying differential gene expression mentioned in Chapter 3,
since the goal is not the comparison of gene expression between samples but to decide if
a gene is expressed or not.

Finally, after identifying absent and present genes, it is necessary to associate them to
protein reactions, allowing us to obtain the RH and RL sets.

4.6.2 Microarray Lowly and Highly Expressed Reactions
As it was explained in Section 3.1, microarray data consists of a set of intensities read for
the probes that compose the chip. Since on common gene expression microarrays, a given
gene may be detected by multiple probesets, obtaining inconsistent or even contradictory
measurements constitutes a potential problem that should be taken into account.

Assuming that the probe intensities have been preprocessed, the following sequence
of steps can be executed to obtain the lists of lowly and highly expressed reactions:

1. Select optimal microarray probeset to represent each gene: Li et al. 2011 in-
troduce a method called Jetset able to obtain unambiguous expression estimates of
specified genes. The proposed technique defines scoring metrics to assess different
aspects of each probeset, including specificity, splice isoform coverage and robust-
ness against transcript degradation. Afterwards, each gene is assigned to a single
representative probeset based on the computed scores.

2. Identify absent/present probesets: when using DNA chips, methods to determine
whether a gene is expressed or not require the application of certain statistical analy-
ses over the probeset data. Moreover, common available techniques impose the use
of specific probeset data preprocessing algorithms as a pre-condition to generate
results. In contrast to this, Warren 2016 proposes the so-called Presence-Absence
calls with negative Probeset (PANP) method which does not have this limitation.
PANP is based on the use of certain probesets present in common DNA chips, as a
per-sample control of non-specific hybridization. In particular, such probesets are
referred to as Negative Strand Matching Probesets (NSMPs) and they are present
in some DNA chips due to mistakes in the strand direction of ESTs (expressed se-
quence tags, see more details in Section 3.1.1) annotated in public databases. As a
result, some probesets of specific DNA chip models were designed in the reverse
complement and cannot hybridize to their true ESTs. Warren 2016 proposes a tech-
nique that takes advantage of this fact to build a statistically representative set of
negative controls, allowing to identify active and inactive genes.

3. Convert probeset identifiers into gene identifiers: after executing the previous
steps, we already have a list of absent and present genes. However, such a list
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represents genes as DNA chip probesets. This representation is not appropriate
for our purposes, since in typical metabolic network reconstructions, genes are not
identified by their probesets. To solve this problem, it is necessary to map the
probeset identifiers to gene identifiers. One possibility is to use the gene identifiers
provided in the Entrez Gene database (Maglott et al. 2011).

4. Determine lowly and highly expressed reactions: the final step consists in map-
ping information about absent or present genes to lowly or highly expressed reac-
tions. Genome annotations often detail the association between gene and protein-
reactions. In particular, a set of logical rules applied over the absent/present status
of the genes determine whether the reactions are expressed or not (see (Thiele and
Palsson 2010) for additional details).

4.6.3 RNA-Seq Lowly and Highly Expressed Reactions
When gene expression is measured by means of an RNA-Seq experiment, Hebenstreit et
al. 2011 provide a technique useful to identify absent and present genes. In particular, the
method is based on the empirical observation of two major messenger RNA abundance
classes in different organisms, including human, mouse and Drosophila.

After normalizing the RNA-Seq data, a kernel density estimation procedure (Rosen-
blatt 1956) applied over the logarithm of RPKMs revealed that the majority of genes
follows a normal distribution centered around 4, whereas the remaining ones formed a
shoulder to the left of this main distributionc (see the plot in (Hebenstreit et al. 2011)).
Further experiments demonstrated that the group of genes centered around 4 corresponded
to present genes, and the other group to absent genes producing non-functional transcripts.

The two groups of genes observed in the kernel density estimate can be characterized
in more detail by estimating the parameters of a gaussian mixture model with two com-
ponents. For this purpose, the EM algorithm can be used (Dempster et al. 1977). After
estimating the mixture model, it can be used to classify the genes as absent or present.

Once the genes have been classified as absent or present, we use the gene-protein-
reaction logical rules present in gene annotations to obtain the lists of lowly and highly
expressed reactions, in the same way as it was explained for microarray data.

4.7 Solvers for Mathematical Optimization
FBA of human metabolism involves solving LP problems composed of thousands of vari-
ables and constraints, since there is one variable and constraint per reaction, and current
network reconstructions of human metabolism contain more than 7 000 of them. Tissue-
specific FBA is even more demanding, since it introduces integer variables, forcing us to
solve the more computationally expensive IP problems.

Solving the LP and IP problems that arise when studying human metabolism by means
of FBA is possible using one of the excellent solvers that are currently available. These
solvers differ in things such as the license, capabilities and efficiency. Here we have
considered the use of three different packages (although there are other good alternatives):

• GNU Linear Programming Kit (GLPK): GLPKd is an open-source software

cGenes with zero counts are excluded since they cannot be represented on the log scale.
dhttps://www.gnu.org/software/glpk/

24

https://www.gnu.org/software/glpk/


4.7. Solvers for Mathematical Optimization

package for solving large scale LP and MIP problems written in C. It provides a
callable library and a standalone solver. The package is distributed under the GNU
General Public Licensee (GPL) so it can be freely used, copied and modified, only
requiring that the same rights are maintained if the software is copylefted.

• Computational Infrastructure for Operations Research (COIN-OR): The COIN-
OR projectf aims at creating mathematical software for operations research. Among
the different tools currently promoted by the COIN-OR project, we find CLP (COIN-
OR Linear Programming), an open source LP solver written in C++, and CBC
(COIN-OR Branch-and-Cut), a MIP solver written in the same language. Both
tools provide callable libraries as well as standalone solvers. On the other hand,
they are published under the Common Public Licenseg that permits it use within
proprietary software in contrast to the GPL.

• CPLEX: CPLEXh is a commercial software package for mathematical optimization
currently maintained and developed by IBM. CPLEX initially offered a C imple-
mentation of the simplex method and later has included tools and solvers for other
problems, including MIP. Similarly to GLPK and COIN-OR, CPLEX also provides
a callable library as well as a standalone solver. CPLEX is particularly well suited
to tackle very large LP and MIP problems very efficiently. However, since it is a
commercial application, its functionality is restricted for free versions unless the
prospective user opts for an academic license.

To obtain the empirical results that will be shown in Chapter 7, we will make use
of the standalone solvers provided by the three packages described above. The three of
them are able to read LP and IP problem definitions written in files. One supported file
format is called lp. lp files are given in plain text and use a very simple syntax that allows
to define the objective function and the constraints of LP or MIP problems. Figure 4.1
shows a very simple example extracted from the package’s website. The example defines
a MIP problem with 4 variables and 5 constraints, being x4 an integer variable.

Maximize
obj: x1 + 2 x2 + 3 x3 + x4

Subject To
c1: - x1 + x2 + x3 + 10 x4 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x2 - 3.5 x4 = 0

Bounds
0 <= x1 <= 40
2 <= x4 <= 3

General
x4

End

Figure 4.1: Sample lp file format.

ehttps://www.gnu.org/licenses/gpl-3.0.html
fhttp://www.coin-or.org/index.html
ghttps://opensource.org/licenses/cpl1.0.php
hhttp://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
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CHAPTER 5
VISUALIZATION OF METABOLIC NETWORKS

UNDER a systems biology perspective, network visualization constitutes an essential
task due to the emphasis on data integration that characterizes this discipline. In

this chapter we describe different resources and techniques useful for metabolic network
visualization. In particular, the Escher visualization tool is presented in Section 5.1. The
open-source network visualization project called Graphviz and its application to this study
is explained in Section 5.2. Finally, an algorithm useful to reduce the complexity and size
of metabolic networks is detailed in Section 5.3.

5.1 The Escher Visualization Tool

5.1.1 Introduction
With the advent of next-generation sequencing, it is now easy to comprehensively mea-
sure the complex interactions between genes, proteins, reactions and metabolites from
which the phenotypic behavior of living organisms emerge. In spite of the fact that data
acquisition has become substantially easier, data analysis is increasingly evolving into the
primary bottleneck to discovery.

Data visualization plays an important role in addressing the data analysis bottleneck
due to its ability to complement the information provided by statistical and modeling
methods. Typically, visualization tools can be classified by the biological information
being represented and also by the visualization style. For instance, three-dimensional
objects are used to represent protein structures. In contrast, only one dimension is suffi-
cient to represent a phylogenetic tree. On the other hand, metabolic pathways and other
biological pathways have been typically represented as two-dimensional maps.

As stated by King et al. 2015, an appropriate visualization tool for metabolic pathways
should satisfy six different core features: (i) biologic data should be clearly represented
and in biochemically correct way, (ii) users should be able to navigate and search through
the visualization, (iii) it should allow users to design and customize pathway maps, (iv)
different data types can be represented using visual cues such as size and color, (v) maps
can be imported and exported enabling interoperability with other tools and (vi) provides
an application program interface (API) useful to integrate the tool within data analysis
pipelines.

There are some examples of desktop applications able to satisfy all of the above men-
tioned core features. By contrast, the same is not true when we focus on existing web ap-
plications. Desktop applications have many advantages over web applications, including
a greater speed or stability. On the other hand, web applications offer quicker deployment
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times, greater cross-compatibility, etc. However, recent performance improvements are
making web tools competitive with desktop applications for many applications.

Escher (King et al. 2015) is a web application tool for visualizing data on biological
pathways, designed to incorporate the six core features mentioned above for pathway
visualization tools.

5.1.2 Main Functionality
Escher allows to build pathway maps provided that there is the necessary information
about the names, stoichiometries, and associated genes for the biochemical reactions in
an organism. More specifically, a constraint-based reconstruction and analysis (COBRA)
model (Bordbar et al. 2014) is used. COBRA models are generally focused on metabo-
lism, but can be applied to any biochemical reaction network.

Escher provides a graphic interface that allows to build pathways maps, adding new
metabolites, reactions and genes. The building process can start from scratch or from
previously built maps. Additionally, Escher assists the user during the definition of the
map layout. Pathway maps can be imported and exported using the functionality of the
interface (for additional details, see the next section).

On the other hand, Escher allows to visualize three types of data: reaction, metabolite
and gene data. Using the Escher interface, it is possible to visualize the comparison of
two datasets using different comparison functions. In addition to this, it is also possible
to alter sizing and coloring options for map elements.

5.1.3 Design and Implementation
Programming Languages

Escher is a web application written primarily in JavaScript. The Escher code can be
compiled into a single JavaScript file, and a JavaScript API is available for interacting
with and extending an Escher visualization. The Escher website is built using the same
API, and other web applications can be built on top of this library.

Escher also provides a Python package with extra features, such as access to Escher
maps from Python terminals, offline access to Escher, a Python API for application de-
velopment, etc.

Map and Model Database

One particularly interesting feature from the perspective of this work are the different
pre-generated maps incorporated by the tool. Such maps are available for different model
organisms, including the Recon 1 model of human metabolism. Recon 1 is the first version
of the Recon X family of metabolic models (see more details in Section 6.1). Escher
provides 5 different maps related to Recon 1 that will be used in this thesis:

• Amino acid metabolism: describes the various biochemical processes responsible
for the synthesis of amino acids.

• Carbohydrate metabolism: the set of metabolic reactions related to the formation,
breakdown and interconversion of carbohydrates.

• Glycolisis: the metabolic pathway that converts glucose into pyruvate.
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• Inositol retinol metabolism: contains maps of the inositol phosphate metabolism
and the pathway responsible of protein retinoylation. Inositol phosphate metab-
olism is especially interesting for cancer research since it is involved in cellular
functions relevant for this disease, such as cell growth, apoptosis, cell migration,
cell differentiation, etc.

• Tryptophan metabolism: describes the processes required to synthesize trypto-
phan, an amino acid used in protein biosynthesis and also a precursor to certain
neurotransmitters.

File Formats

Escher input data can be provided in two different formats: comma separated values
(CSV) and JavaScript object notation (JSON). With respect to the available output for-
mats, graphic information can be exported to well known image formats, such as the
Scalable Vector Graphics (SVG) or the Portable Network Graphics (PNG) formats.

License

Escher is open-source software hosted on GitHuba, with a public bug tracker and tools
for community contribution to the codebase. Documentation for Escher describing its
features and providing detailed information on the JavaScript and Python APIs is also
available.

5.2 Using Graphviz for Metabolic Network Visualization
Graphviz (E. R. Gansner and North 2000) is a general-purpose, open-source graph visu-
alization tool. Graphviz has successfully been applied to create and manipulate graphs
in a wide range of fields, including networking, bioinformatics, software engineering,
database design, etc.

From the perspective of this work, the main difference between Graphviz and specific-
purpose drawing tools such as Escher is the fact that Graphviz can be adapted to the user’s
specific needs, offering a much greater versatility. However, this increased versatility
often comes at the cost of a substantial effort required from the user to obtain the desired
results. Some of the experiments reported in Chapter 7 explore the advantages offered
by the functionality incorporated in Graphviz. Below we provide a general description of
such functionality as well as some additional details about the design and implementation
of the tool.

5.2.1 Main Functionality
As stated by E. R. Gansner and North 2000, much work in graph manipulation and visual-
ization has focused either on high-level interactive editors or on low-level graph libraries,
whose usefulness is well demonstrated. A middle approach is offered by filters, which
read and process an input stream, and produce an output stream. Filters have successfully
been used in areas such as text processing or program compilation, due to their focus on

ahttps://github.com/zakandrewking/escher
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symbolic computation and their ability to automate repetitive tasks. In contrast, manual
interactive editors are not useful in these areas.

Graphviz is a toolkit of libraries and programs for creating, filtering and interacting
with graphs, where filtering is just as important as interactive tools. Graphviz functional-
ity is provided through four different components: libraries, layout tools, graphical tools
and graph filters.

Libraries

The toolkit uses two libraries, Libgraph and Dynagraph, that provide low-level function-
ality. Libgraph allows to read, write and manipulate graph abstractions, whereas Dyna-
graph is built on top of Libgraph and provides a framework for displaying incrementally
changing graphs.

Libgraph uses a specific data language called Dot, which is shared by the graph manip-
ulation tools of Graphviz. The Dot language provides syntax for defining graphs, nodes
and edges, plus the ability to attach string-valued name-attribute pairs to graph compo-
nents. Sets of objects are modeled as subgraphs. The details of the Dot language can be
found in (E. Gansner et al. 2010). Figure 5.1 provides a sample file in Dot format ex-
tracted from (E. Gansner et al. 2010) exploiting some basic drawing features (different
colors, node shapes, arc labels, etc.) The result of plotting this graph file is shown in
Figure 5.2.

digraph G {
size ="4,4";
main [shape=box];
main -> parse [weight=8];
parse -> execute;
main -> init [style=dotted];
main -> cleanup;
execute -> { make_string; printf}
init -> make_string;
edge [color=red];
main -> printf [style=bold,label="100 times"];
make_string [label="make a\nstring"];
node [shape=box,style=filled,color=".7 .3 1.0"];
execute -> compare;
}

Figure 5.1: Sample graph file in Dot format.

Layout Tools

Graph layout tools constitute the core of Graphviz. The primary goal of the layout tools
is to provide good diagrams of reasonable size graphs, scaling well to large graphs. Here,
a reasonable size means no larger than what fits on a single screen or printed page with
readable labels, which means around 50 or 100 nodes. For larger graphs, additional user
interaction is often required. Graphviz layout tools are implemented as stream-oriented
programs that read graphs, compute layouts and write the graphs in a graphics language.
Graphviz currently provides 6 layout tools:
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• dot: make hierarchical layouts of directed graphs, providing an assortment of
shapes, styles and colors.

• neato: create layouts of undirected graphs that emphasize path distance and sym-
metry.

• fdp: provides an alternative layout to neato for undirected graphs.

• sfdp: a version of fdp that scales to very large graphs.

• twopi: creates a layout for radial graphs.

• circo: a tool appropriate to create circular graph layouts.

main

parse

init

cleanup

printf

100 times

execute

make a
stringcompare

Figure 5.2: Drawing of sample graph file.

Graphical Tools

The primary interactive tool offered by Graphviz is Dotty, a browser that can display
layouts and incorporate them in user interfaces for external programs. Dotty provides a
WYSIWYG interface as well as a procedural one convenient for algorithmic operations.

Dotty is an application written in the Lefty graphical editor (Dobkin and Koutsofios
1991). Lefty programs are written in a scripting language similar to other conventional
scripting languages (such as the UNIX shell). Lefty has string variables with runtime
conversion for arithmetic, associative arrays, hierarchical namespaces for organizing code
and data, and functions with arguments and local variables.

Graph Filters

As it was explained above, Graphviz makes strong emphasis on graph filters, providing
different tools for this purpose (the following is not an exhaustive list):
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• unflatten: unflatten is a preprocessor to dot that is used to improve the aspect
ratio of graphs having many leaves or disconnected nodes. The usual layout for
such a graph is generally very wide or tall.

• sccmap: decomposes directed graphs into strongly connected components and an
auxiliary map of the relationship between components. In this map, each compo-
nent is collapsed into a node.

• gvcolor: is a filter that sets node colors from initial seed values. Colors flow
along edges from tail to head, and are averaged at nodes. The graph must already
have been processed by dot. Appropriate choice of initial colors yields drawings
in which node colors help to emphasize logical relationships between nodes.

5.2.2 Design and Implementation
Programming Languages

Graphviz is implemented in C language. Some code aspects of the core of Graphviz try to
engineer around language features that C lacks but are found in more modern languages,
in particular those related to object-oriented programming, such as inheritance, polymor-
phism and object initialization and finalization.

File Formats

As it was explained above, Graphviz defines its own file format for graph definition called
Dot, which is used by the different applications provided in the package. From this Dot
files, graph drawings can be generated in different image formats, such as PNG, PostScript
(PS) or Portable Document Format (PDF).

License

Graphviz is distributed under the Eclipse Public License (EPL)b. EPL is an open-source
software license designed to be business-friendly. The receiver of EPL-licensed programs
can use, modify, copy and distribute the work and modified versions.

5.2.3 Application to Metabolic Network Visualization
In this thesis, we will apply Graphviz to plot metabolic networks. As it can be seen in Fig-
ure 5.1, a graph in Dot file format basically consists of a list of arcs between node pairs.
In typical metabolic network representations, such as those used in Escher, nodes repre-
sent metabolites, and arcs represent biochemical reactions. Therefore, Dot file generation
only requires the lists of arcs and metabolites to be represented and a simple script file
to appropriately create the graph with the desired format, including node and arc shapes,
sizes, colors, etc.

Appendix A describes the open-source software created for this thesis, including a
brief description of the main available tools. Some of these tools are useful to create
graphs in Dot format.

bhttp://www.eclipse.org/legal/epl-v10.html
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5.3 Metabolic Network Reducing Algorithm
The size and complexity of metabolic network reconstructions have become larger and
larger during the last years. Many stoichiometric methods cannot be applied to large net-
works, containing several thousand reactions. On the other hand, it is easier to study the
basic principles of the metabolism of a given organism by focusing on smaller models rep-
resenting their core parts (Erdrich et al. 2015). From the perspective of this study, this can
also be useful to obtain simpler visualizations of metabolic networks. In Section 5.2.1 we
explained that a reasonable graph size to ensure an understandable representation using
Graphviz was around 50 or 100 nodes. However, human metabolic reconstructions may
contain thousands of them. To solve this problem, manually generated network represen-
tations can be used. The elaboration of such representations can be assisted by computer
programs, as it is the case of Escher. Alternatively, the simplified networks can be ob-
tained in a faster and more systematic manner by means of network reducing algorithms.

Here we propose to apply a network reducing algorithm called NetworkReducer (Er-
drich et al. 2015), whose goal is to obtain small models capturing central metabolism or
other aspects of interest given the whole network model under study and a list of protected
elements and functions.

5.3.1 The NetworkReducer Algorithm
NetworkReducer operates over metabolic network models such as those described in
Chapter 4. For convenience in reading, here we reproduce some of the formulas that
were already introduced there. In particular, the metabolic network models are composed
of m metabolites, n reactions and a m × n stoichiometric matrix S. Given the flux vec-
tor v, if the steady state assumption is made, we obtain the metabolite balancing equation:

S · v = 0 (5.1)

The solutions v satisfying the previous equation form the null space of S whose di-
mension is given by the degrees of freedom (df):

df = n− rank(S) (5.2)

Additionally, the flux vector can be subject to lower and upper bound constraints:

l ≤ v ≤ u (5.3)

As it was explained in Chapter 4, FBA can be used to find the flux vectors satisfying
the constraints given in Equations 5.1 and 5.3, and at the same time, optimizing a specific
linear objective function:

Maximize Z = cT · v (5.4)

where cT represents a transposed vector of coefficients and Z is typically the amount of
biomass production or other product of interest.

NetworkReducer reduces the size of a large metabolic network to a smaller subnet-
work while retaining certain desired features of the full network. Such features can be
classified in five groups:

• Protected metabolites (PM ): PM defines a list of metabolites that should be
present in the resulting subnetwork.
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• Protected reactions (PR): the set of reactions PR should be kept in the final sub-
network.

• Protected phenotypes (P P ): a set of inequalities describing specific phenotypes,
Dkv ≤ dk, where k = 1...s and s is the number of phenotypes, see (Erdrich et al.
2015) for more details.

• Minimum degrees of freedom (dfmin): the number of degrees of freedom given
by Equation 5.2 of the final subnetwork should be above dfmin.

• Minimum number of reactions (nmin): the algorithm ensures that the final number
of reactions is not below nmin.

NetworkReducer starts with a preprocessing step that removes blocked reactions (those
with zero flux) and checks feasibility of protected phenotypes. After that, the algorithm
executes an iterative process where reactions are removed, checking that the resulting
subnetwork retains the protected parts explained above. At each iteration, the algorithm
applies FVA (see Section 4.5) to decide which reaction is to be removed. Erdrich et al.
2015 suggest to remove first those reactions with smallest fluxes, although alternative cri-
teria can be applied. When the network pruning iterations finish, a final (and optional)
step of network compression is executed, where reaction sets are represented as single
overall reactions with collapsed stoichiometries. Algorithm 5.1 shows the pseudocode of
the algorithm.

input : N (stoichiometric network), PR (protected reactions)
PM (protected metabolites), PP (protected phenotypes)
dfmin (minimum degrees of freedom), nmin (minimum number of reactions)

output : N ′ (reduced stoichiometric network)
auxiliar: R (set of removable reactions), F (set of flux ranges), success (boolean value)

1 begin
2 N ′ := network_preprocessing(N,PM , PR, PP )
3 R := get_reactions(N ′)− PR

4 while df(n) < dfmin and length(R) 6= 0 and get_num_react(N ′) > nmin do
5 F := FVA(N ′, R)
6 success := false
7 while success = false and length(R) 6= 0 do
8 r := get_candidate_reaction_for_removal(N ′, F,R)
9 N ′ := remove_reaction(N ′, r)

10 R := R− r
11 success := check_protected_functions(N ′, PM , PR, PP )
12 if success = false then
13 N ′ := insert_reaction(N ′, r)

14 N ′ := remove_unconnected_metabolites(N ′)
15 N ′ := compress_network(N ′)

Algorithm 5.1: Pseudocode for the NetworkReducer algorithm.
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5.3.2 Application to Human Metabolism
Erdrich et al. 2015 applied their NetworkReducer algorithm to the iAF1260 model of Es-
cherichia Coli presented in (Feist et al. 2007). The model is composed of 2 382 reactions
and 1 682 metabolites. However, in this thesis we will work with genome-scale models of
human metabolism, which are much more complex. Model size can be problematic when
executing the algorithm due to the necessity of performing an FVA procedure at each it-
eration. Specifically, if the current metabolic network is composed of n reactions, then
FVA should solve n optimizations. Moreover, if the optimization is formulated as an in-
teger problem instead of a linear one, then the time complexity becomes even greater (see
Section 4.3.2 for a more detailed explanation).

To address this issue, we propose a slight modification of NetworkReducer where the
time cost of the FVA step is greatly decreased. For this purpose, at each iteration FVA
is not applied over the whole set of removable reactions but over a randomly generated
subset. The size of the subset is provided as an input parameter. The greater the sub-
set, the closer the algorithm gets to the results of NetworkReducer but also the greater
the time cost. We will refer to the new algorithm as the SimplifiedNetworkReducer algo-
rithm, its pseudocode is shown in Algorithm 5.2. The key aspect of the algorithm is the
extract_subset_of_removable_reactions function, that randomly selects a
subset of the set of removable reactions at each iteration.

input : N (stoichiometric network), PR (protected reactions)
PM (protected metabolites), PP (protected phenotypes)
dfmin (minimum degrees of freedom), nmin (minimum number of reactions)
s (size of removable variable subset to be analyzed with FVA)

output : N ′ (reduced stoichiometric network)
auxiliar: R (set of removable reactions), R′ (partial set of removable reactions)

F (set of flux ranges), success (boolean value)
1 begin
2 N ′ := network_preprocessing(N,PM , PR, PP )
3 R := get_reactions(N ′)− PR

4 while df(n) < dfmin and length(R) 6= 0 and get_num_react(N ′) > nmin do
5 R′ = extract_subset_of_removable_reactions(R, s)
6 F := FVA(N ′, R′)
7 success := false
8 while success = false and length(R′) 6= 0 do
9 r := get_candidate_reaction_for_removal(N ′, F,R′)

10 N ′ := remove_reaction(N ′, r)
11 R := R− r
12 R′ := R′ − r
13 success := check_protected_functions(N ′, PM , PR, PP )
14 if success = false then
15 N ′ := insert_reaction(N ′, r)

16 N ′ := remove_unconnected_metabolites(N ′)
17 N ′ := compress_network(N ′)

Algorithm 5.2: Pseudocode for the SimplifiedNetworkReducer algorithm.
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CHAPTER 6
PUBLIC DATABASES

THIS chapter is devoted to introduce two public databases relevant for the studies
carried out in this MSc Thesis. On one hand, the Recon X database on human

metabolism is described in Section 6.1. On the other hand, The Cancer Genome Atlas
database containing diverse information related to cancer is presented in Section 6.2.

6.1 Recon X
Understanding the phenotypic behavior of biological organisms is an overly complex goal
where the modeling of metabolic pathways plays a central role. Because of this, a high
quality reconstruction of metabolism is greatly interesting for addressing a wide variety of
scientific and applied questions about target living organisms, including contextualization
of high-throughput data or the optimization of metabolic engineering procedures just to
name a few.

Biochemistry has long been occupied with the reconstruction of metabolic pathways.
However, it has been in the last decade when, by means of modern genome-sequencing ca-
pabilities, these pathway reconstructions have been increasingly integrated into genome-
scale metabolic models. As a result, the field of genome-scale metabolic network analysis
has expanded rapidly, and today more than fifty genome-scale metabolic reconstructions
have been published.

The Recon X database provides a reconstruction of human metabolism using currently
existing knowledge on metabolites and chemical reactions. In the following sections we
provide a brief overview about this database and mention possible applications developed
in the context of genome-scale metabolic network analysis.

6.1.1 Overview
The Recon X databasea is an effort to reconstruct human metabolism. Recon X contains
the metabolic information of Recon 2 (Thiele, Swainston, et al. 2013), the most compre-
hensive biochemical knowledge-base on human metabolism currently available.

Recon 2 is a consensus metabolic reconstruction integrating metabolic information
from 5 different sources:

• Recon 1, a global human metabolic reconstruction (Duarte et al. 2007).

• EHMN, Edinburgh Human Metabolic Network (Hao et al. 2010).

ahttp://humanmetabolism.org/
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• HepatoNet1, a liver metabolic reconstruction (Gille et al. 2010).

• Ac/FAO, a module on acylcarnitine/fatty acid oxidation metabolism (Sahoo, Franz-
son, et al. 2012).

• A human small intestinal enterocytes reconstruction (Sahoo and Thiele 2013).

In addition to this, Recon 2 has the following interesting features:

• Full semantic annotation, with references to persistent and publicly available chem-
ical and gene databases.

• Access to database content both using the Recon X’s webpage or using a download-
able file in SBML format.

Access from Webpage

Recon X webpage can be used to access information about metabolites and chemical reac-
tions. Specifically, the database contains a total of 2 626 metabolites and 7 440 reactions.
Information about metabolites comprises a list of metabolite names along with links to
extended data for each one. If the user clicks on one of such links, it is possible to inspect
the list of reactions where the given metabolite is involved, links to other databases, such
as PubChemb, or the Human Metabolome Databasec, etc.

Regarding the information about chemical reactions, again the webpage provides a
list of reaction names with links to extended information, which in this case includes the
stoichiometric formula with the involved metabolites, as well as other important fields,
such as whether a gene to protein association exists for a given reaction.

Finally, the webpage also offers the possibility to search for specific metabolites or
reactions by providing their identifiers or other special fields.

Access from File in SBML Format

Recon X also offers the possibility of downloading the entire database. Specifically, the
database is provided in a single file in SBML format.

6.1.2 Applications
Since the first genome-scale reconstruction was published a decade ago, the availability
and utility of genome-scale metabolic reconstructions have made a qualitative leap for-
ward. Metabolic reconstruction have now been built for a wide variety of organisms and
have been used toward five major ends (Oberhardt et al. 2009):

1. Contextualization of high-throughput data: with biology increasingly becom-
ing a data-rich field, an emerging challenge has been determining how to organize,
sort, interrelate, and contextualize all of the high-throughput datasets now avail-
able. This challenge has motivated the field of top-down systems biology, wherein
statistical analyses of high-throughput data are used to infer biochemical network
structures and functions. In top-down modeling, determination of network struc-
ture poses a major technological and computational hurdle. However, many of the

bhttp://pubchem.ncbi.nlm.nih.gov/
chttp://www.hmdb.ca/
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weaknesses of top-down modeling, such as lower accuracy and confidence in the
resulting models, can be alleviated by comparison or merging with carefully built
bottom-up models, such as genome-scale metabolic reconstructions.

2. Guidance of metabolic engineering: metabolic engineering involves the use of
recombinant DNA technology to selectively alter cell metabolism and improve a
targeted cellular function. Traditionally, metabolic engineering has been performed
on a small scale through manipulation of a few genes to affect yield of a target
metabolite. The use of genome-scale metabolic reconstructions represents a major
evolution for the field, wherein whole-cell networks and systems-level analyses are
for the first time being leveled to determine optimal engineering strategies on a
whole-cell basis.

3. Directing hypothesis-driven discovery: Much of what is known in biology to-
day is the result of meticulous, hypothesis-driven discovery. With the tremendous
expansion of biological data in recent years, the need has arisen for new method de-
velopment to integrate high-throughput data with the biological discovery process.
Genome-scale metabolic reconstructions represent concise collections of existing
hypotheses, and taken together as a broad context they enable systematic identifi-
cation of new hypotheses that can be tested and resolved.

4. Interrogation of multi-species relationships: metagenomics studies particularly
have shown most ecosystems to be extremely diverse, including up to thousands
of distinct taxa. Genome-scale metabolic reconstructions are increasingly being
applied to these multi-cell problems, as well as to the study of functional differences
between species.

5. Network property discovery: genome-scale metabolic reconstructions have en-
abled analysis of emergent phenomena through a focus on whole networks rather
than individual pathways or genes, and many computational techniques have been
developed to probe network properties. These types of network-level analyses will
be critical to fully unravel the complex genotype-phenotype relationships in cells.

6.2 The Cancer Genome Atlas
Cancer is considered the most complex disease that mankind has to face. There are at least
200 forms of cancer and many more subtypes. Cancer is caused by errors in DNA that
make cells grow uncontrolled. Identifying the genomic changes for each type of cancer
and understanding the interactions between these changes will provide the foundation for
improving cancer prevention, early detection and treatment.

In 2005, The Cancer Genome Atlas (TCGA) (NCI and NHGRI 2005a) was launched
as a major effort to accelerate the comprehensive understanding of the genetics of can-
cer using innovative genome analysis technologies. TCGA is a public funded project
launched by the National Institute of Health (NIH) that aims to catalogue and discover
major cancer-causing alterations in large cohorts of human tumors through large-scale
genome sequencing and integrated multi-dimensional analyses. According to (Tomczak
et al. 2015), Phase I of the project (a 3-year pilot study) aimed to develop and test the
research infrastructure based on the characterization of chosen tumors having poor prog-
nosis: brain, lung, and ovarian cancers. Phase II started in 2009 expanding previous anal-
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yses to additional types reaching 30 different tumor types analyzed by 2014. The TCGA
project engaged scientists and managers from NIH’s National Cancer Institute (NCI) and
National Human Genome Research Institute (NHGRI) funded by the US government, as
well as cooperating with institutions across the USA and Europe.

6.2.1 Overview
The main goal of TCGA is to improve our ability to diagnose, treat and prevent cancer.
As reported in (NCI and NHGRI 2005c), TCGA has generated comprehensive, multi-
dimensional maps of the key genomic changes in 33 types of cancer. TCGA dataset
currently stores 2.5 petabytes of data describing tumor tissue and matched normal tissues
from more than 11,000 patients. This information is publicly available and has been
used widely by the research community. In addition to this, it has been estimated that
the available data has contributed to more than a thousand cancer studies by independent
researchers.

A general description about the main components of TCGA is provided in (NCI and
NHGRI 2005b):

1. Tissue processing: cancer patients are asked to donate a portion of tumor tissue that
has been removed as part of their cancer treatment along with a sample of normal
tissue. Both samples are referred to as biospecimens. After biospecimen samples
have been extracted, the TCGA Biospecimen Core Resources process the samples
to ensure if they meet the stringent set of criteria that is required to enable their use
for research purposes. In addition to this, biospecimens are coded so as to remove
any information that might connect a sample with private information of a patient.

2. Research and discovery: researchers of the TCGA Genome Characterization Cen-
ter analyze tumor and normal tissue from hundreds of patients for each cancer se-
lected for study, providing the statistical power to produce a complete genomic
profile of each cancer type. Some of the aspects studied during sample analysis
include how the genome is rearranged or how gene expression changes in tumors
compared to normal cells. Because of this, the application of DNA sequencing
techniques conducted by the High-throughput TCGA Genome Sequencing Centers
plays a major role in the performed research tasks. Overall, TCGA have analyzed
thousands of biospecimen samples, integrating the data across the different tumor
types.

3. Data sharing: all the generated information about biospecimen samples is entered
by TCGA Data Coordinating Center into public databases as it becomes available.

4. Community research and discovery: scientists from the broader cancer research
community are able to search, download and analyze the different datasets created
by TCGA, allowing TCGA data to have a multiplier effect on the scope and quality
of cancer research.

6.2.2 Applications
TCGA has created a genomic data analysis pipeline able to collect, select, and analyze
human tissues for genomic alterations on a very large scale. The main applications and
findings of the initiative are related to cancer research (NCI and NHGRI 2005c):
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• Molecular basis of cancer: TCGA has improved our understanding of the genomic
underpinnings of cancer. One example of this can be found in a TCGA study that
established a link at the molecular level between a subtype of breast cancer and
another subtype of ovarian cancer. Since both subtypes seem to follow a common
path of development, they may respond to similar therapeutic strategies.

• Tumor subtypes: TCGA has greatly contributed to a new perspective on cancer
classification, identifying tumor subtypes with different sets of genomic alterations.

• Therapeutic targets: the initiative has identified genomic features of tumors that
can be targeted with currently available therapies or can be used as the basis for
new drug development. For instance, genomic alterations in lung squamous cell
carcinoma were studied and identified by TCGA. The findings of this research will
be used to define the specific treatment provided to patients.
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CHAPTER 7
EXPERIMENTS

THE main goal of this work is to study human metabolism, and in particular the me-
tabolism of cancer, under a systems biology perspective. For this purpose it is neces-

sary to integrate transcriptomic and metabolic data using existing databases and to analyze
the resulting information by means of appropriate mathematics and bioinformatics tech-
niques. Previous chapters have been devoted to explain the different elements involved in
the process, and at this point we are prepared to present the empirical results of the study.
This chapter is organized as follows: Sections 7.1 and 7.2 list the datasets and methods,
respectively, used in the experiments. Section 7.3 enumerates the software tools required
to obtain the results, including solvers, visualization programs and the open-source soft-
ware that has been developed for this thesis. Finally, Section 7.4 shows the experiment
results.

7.1 Datasets
The basis of this work is the integration of metabolic and transcriptomic data extracted
from public databases. In particular, the following two datasets were used:

• Recon 2: Recon 2 is the second version of the human metabolic reconstruction pro-
vided in the Recon X database (see Section 6.1). Recon 2 contains 7 440 reactions
and 5 063 metabolites.

• Kidney renal clear cell carcinoma (KIRC) data: the KIRC data collectiona is
part of the TCGA database (see Section 6.2) whose aim is to accelerate the compre-
hensive understanding of the genetics of cancer using innovative genome analysis
technologies. KIRC data contains diverse information about 537 sample of kidney
tissue, including RNA-Seq data. From the available data, we selected 60 samples
coming from healthy cells and another 60 from cancerous cells so as to obtain a
balanced experiment design. In addition to this, all of the samples were sequenced
at the same centerb, avoiding possible batch effects.

ahttps://gdc-portal.nci.nih.gov/projects/TCGA-KIRC
bThis and other relevant information is present in the TCGA barcodes associated to biospecimen data

(see https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode for more details).
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7.2 Methods
To obtain the experiment results reported in this chapter the following methods were
necessary:

• Flux balance analysis (FBA): FBA constitutes the basic technique used in this
work to study human metabolism (for more details, see Section 4.4). FBA uses
mathematical optimization, and in particular, linear programming (LP), to obtain
its results.

• Flux variability analysis (FVA): FVA allow us to assess which fluxes have a higher
importance within a metabolic network (additional details are explained in Sec-
tion 4.5). FVA also plays an important role in the network reducing algorithm
applied here.

• Kernel density estimation (KDE): KDE was applied to carry out a descriptive
study of the RNA-Seq data. In particular, the binary logarithm of RPKMs was
represented. The purpose of this representation was to verify the empirical findings
shown in (Hebenstreit et al. 2011), were the data was grouped in two gaussian
distribution associated to highly and lowly expressed genes (see Section 4.6.3).

• Gaussian mixture model estimation: this method was used to estimate the pa-
rameters of a mixture of two gaussians distributions from the binary logarithm of
RPKMs observed in the RNA-Seq data. Once the model was estimated, it was used
to classify the genes as lowly or highly expressed (refer to Section 4.6.3 for addi-
tional details).

• Tissue-specific FBA: Tissue-specific FBA allows us to study the metabolism of
kidney cells. This technique is based on mathematical optimization as well as con-
ventional FBA. However, in this case, mixed integer programming (MIP) problems
are to be solved (see Section 4.6). This method requires lists of lowly and highly
expressed genes as input data.

• Mann-Whitney’s U -test: the Mann-Whitney’s U -test (Mann and Whitney 1947)
is a non-parametric statistical test that is used to decide whether two independent
samples of observations come from the same population. Due to its non-parametric
nature, the U -test does not require that the observed data come from a specific
distribution, in contrast to the Student’s t-test, which is used for the same purpose
but assumes data normality.

• Benjamini-Hochberg procedure: a multiple testing correction procedure is needed
to adjust our statistical confidence measures when performing a large number of sta-
tistical tests. The Benjamini-Hochberg procedure (Benjamini and Hochberg 1995)
allows to control the false discovery rate (FDR). The FDR focuses on controlling
the rate of type I errors that occur when performing a set of hypothesis tests.

• Network reducer algorithm: this method is used to obtain smaller metabolic net-
works where the results of other methods are easier to analyze. The network reducer
algorithm used in this work internally uses FVA as a criterion to discard network
elements (see Section 5.3 for additional details).
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7.3 Software Tools
In this section we enumerate the main software tools used to obtain the empirical results,
including mathematical solvers, tools for metabolic network visualization and statistical
packages. Additionally, a significant effort has been put in the development of software
specific for this work.

7.3.1 Solvers
We used the standalone solvers available for the three software packages described in
Section 4.7:

• GLPSOL: GLPSOL is the solver incorporated in the GLPK. GLPSOL solves LP
and MIP problems (version 4.57 was used).

• CLP: it is the LP solver included in the COIN-OR project (version 1.16.6 was
used).

• CBC: COIN-OR also incorporates CBC, a MIP solver (version 2.9.5 was used).

• CPLEX: CPLEX is a commercial LP and MIP solver provided by IBM (version
12.6.2.0 was used).

7.3.2 Visualization Tools
Chapter 5 introduced the two visualization tools used in this work:

• Escher: this tool allows to visualize the results of FBA techniques over manually-
generated metabolic network representations. In particular, the metabolic maps for
Recon 1 will be used (see Section 5.1.3 for more details about the available maps).

• Graphviz: Graphviz is a general purpose graph visualization tool, which provides
a greater versatility with respect to Escher at the cost of additional effort required
from the user to obtain the desired results (version 2.38.0 was used).

7.3.3 Statistical Tools
Statistical techniques were also necessary in the proposed experimentation as it was men-
tioned in Section 7.2. The following statistical packages were used:

• scikit-learn: the scikit-learn Python modulec provides a set of tools for data anal-
ysis. In particular, we used the KDE and gaussian mixture model estimation func-
tionality provided by the package (version 0.17.1 was used).

• scipy: scipyd is a Python module for mathematics, science and engineering. It
provides an implementation of the Mann-Whitney U -test (version 0.17.1 was used).

• statsmodels: statsmodele is a Python statistics package that we have used to con-
duct statistical tests. Specifically, we used its implementation of the Benjamini-
Hochberg procedure (version 0.8.0rc1 was used).

chttp://scikit-learn.org
dhttps://www.scipy.org/
ehttp://statsmodels.sourceforge.net/

45

http://scikit-learn.org
https://www.scipy.org/
http://statsmodels.sourceforge.net/


Chapter 7. Experiments

7.3.4 Software Developed for this Thesis
The different tools described above not always offer full or even partial implementations
of all of the methods used in this thesis (for instance, the FBA method uses mathematical
solvers to find solutions for LP problems, however this is only a part of the tasks to be
executed when applying FBA). In addition to this, the results reported in this chapter often
requires the combination of different tools and methods. To fill these gaps in the available
tools, we have developed an open-source software toolkit that is described in Appendix A.
The name of the toolkit is Flux Capacitor or fcap.

7.4 Results
After introducing the datasets, methods and software tools used in the experiments, we
are ready to show the obtained results.

In some experiments, the time cost of specific algorithms or processes is reported.
In all cases such time cost was measured on a computing cluster composed of nodes
integrated by two Intel Xeon E5-2450 processors with 8 cores and 4GB RAM per each
core. Typically, computations were done in individual cores except for those situations in
which parallelism can be exploited.

7.4.1 Comparison between Solvers
As it was explained in Chapter 4, the methods used in this work to study human metab-
olism are based on mathematical optimization techniques, and more specifically on the
use of LP and MIP solvers. In this section we study the differences in efficiency of some
available options. Efficiency is a key aspect from the perspective of this work, because
two of the techniques applied here require to intensively solve LP and MIP problems.
These two techniques are FVA and the NetworkReducer algorithm (indeed, NetworkRe-
ducer internally executes multiple instances of FVA).

Efficiency Solving LP Problems

As it was previously stated, LP problems can be efficiently solved using the simplex algo-
rithm. FBA involves solving individual LP problems. Table 7.1 shows the time in seconds
required to maximize the biomass function defined in the Recon 2 human metabolic net-
work reconstruction for three different solvers: GLPSOL, CLP and CPLEX. Only one
core were used to perform the calculations. As it can be seen, the three solvers were able
to find the solution in less than a second, being GLPSOL the slowest and CPLEX the
fastest one. However, the differences were negligible.

Efficiency Solving MIP Problems

Solving MIP problems is more computationally demanding than solving LP problems
(see Section 4.3.2 for more details). The tissue-specific FBA technique described in Sec-
tion 4.6 involves solving a MIP problem for each RNA-Seq sample. Table 7.2 shows the
average cost when solving 120 MIP problems for the TCGA’s KIRC samples selected for
this study (60 for healthy cells and 60 for cancerous cells). RNA-Seq data was combined
with the Recon 2 metabolic network reconstruction. GLPSOL, CBC and CPLEX solvers
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Table 7.1: Time in seconds required to maximize the biomass function for Recon 2
metabolic reconstruction when using GLPSOL, CLP and CPLEX. Calculations were ex-
ecuted in 1 core.

Time (s)
GLPSOL 0.72
CLP 0.23
CPLEX 0.17

Table 7.2: Average time in seconds required by GLPSOL, CBC and CPLEX to solve 120
MIP problems for the TCGA’s RNA-Seq KIRC samples chosen for this work. Recon 2
metabolic reconstruction was used. Computations were carried out in 8 cores.

Avg. Time (s)
GLPSOL N/A
CBC 810
CPLEX 11

were used. Computations were carried in a whole cluster node with 8 cores, taking advan-
tage of the parallel execution capabilities of those solvers which have them, in particular,
CBCf and CPLEX.

As it can be seen in Table 7.2, CPLEX was substantially faster than CBC when solving
the MIP problems. No data is reported for GLPSOL since it was not able to find the
solution in most cases. This is in line with the findings shown in (Meindl and Templ
2013), where the commercial solvers are by far the most efficient and the free ones have
difficulties to solve some kinds of problems. However, in our case CBC worked well
although slower than CPLEX.

Time cost of MIP solving can be reduced if the optimization is suboptimal. One
possibility is to stop the process when the difference (or gap) between the best solution
found and the bound for the optimal solution falls below a certain percentage of that
bound. This percentage is referred to as the MIP gap tolerance parameter by CPLEX,
and it is also available for the CBC solver. Table 7.3 shows the average time in seconds
required to solve 120 MIP problems resulting from the integration of KIRC and Recon 2
data. In this case, the CBC and CPLEX solvers were used with a gap tolerance equal to
0.01. Additionally, the average percentage of optimality of the solutions is also reported.
Optimality is defined here as the best solution obtained by the suboptimal solver divided
by the best one when using the solver without any gap tolerance parameter (an optimality
of 100% means that the optimal solution was found). As it is shown in the table, both
solvers substantially reduced their time cost while retaining almost a 100% optimality.

For the rest of the experiments, we will use CPLEX as our LP and MIP solver due to
its greater efficiency. However, it has been demonstrated that CBC is also a good option
and has one great advantage with respect to CPLEX. In particular, CBC has a much less
restrictive license, which can be interesting for certain uses.

fTo enable CBC’s parallel mode it was necessary to use the configure option --enable-cbc
-parallel when building the package.
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Table 7.3: Average execution time in seconds and percentage of optimality obtained by
CBC and CPLEX when solving 120 MIP problems for the integration of KIRC RNA-Seq
data the Recon 2 metabolic reconstruction. Gap tolerance was equal to 0.01. Computa-
tions were made in 8 cores.

Avg. Time (s) Optimality (%)
CBC 30 99.8
CPLEX 2 99.3

7.4.2 Recon 2 Biomass Optimization
Recon 2 metabolic reconstruction used in this work provides a biomass function that can
be used to apply FBA to human metabolism. After this, it is possible to study the network
robustness by means of FVA.

The objective function obtained when applying FBA to the Recon 2 metabolic model
was equal to 3.20. Regarding the FVA results, we computed the flux ranges using 0.9
as the value of the γ parameter and generated a box plot for them that is shown in Fig-
ure 7.1. The first quartile of the flux range data was equal to zero, which means that a 25%
of the fluxes cannot change their value in optimal biomass production mode. However,
the median value for the flux ranges was greater than 500 (the exact value was 635.9).
Taking into account that the maximum value for the flux ranges is 2 000g, this observation
suggests that the network has a high robustness degree.

 0

 500

 1000

 1500

 2000

Recon 2 Biomass

Fl
u
x 

R
a
n
g
e

Figure 7.1: Boxplot for Recon 2 flux ranges when optimizing the biomass function. The
γ parameter was equal to 0.9.

Due to the great computational cost of FVA, we also measured the time in seconds
required to carry out the computations. Due to the fact that FVA is an embarrassingly par-
allel problem, the measurements were made using different numbers of computing nodes.
Table 7.4 shows the time cost in seconds and the speedup achieved when applying FVA to
the Recon 2 metabolic model with biomass production as the objective function. The pro-
cess was executed in 1, 2 and 4 computer nodes composed of 8 cores. As it can be seen,
FVA required more than two hours when executed in one computing node. Parallelism

gThe maximum value for the flux upper bounds in Recon 2 is 1 000. and the minimum value for the
lower bounds is −1 000.
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Table 7.4: Execution time in seconds and speedup when applying FVA to the Recon 2
metabolic network model using biomass production as the objective function. The γ
parameter was equal to 0.9. Computing nodes composed of 8 cores were used.

Time (s) Speedup
FVA (1 node) 9 480 1.0
FVA (2 nodes) 7 140 1.3
FVA (4 nodes) 4 140 2.3

allowed us to reduce the time cost, but the speedup was always below the number of com-
puting nodes. We think that this is due to the time spent by our implementation reading
and writing files (files in lp format should be loaded in memory and solution files are
stored on disk). This part of the process cannot be parallelized and had a non-negligible
time cost when compared to that of solving the LP problems using CPLEX.

7.4.3 Determining Absent and Present Genes
As it was explained in Section 4.6.3, obtaining the set of lowly and highly expressed
reactions when working with RNA-Seq data first requires to decide whether each gene is
absent or present according to its abundance. For this purpose, we follow the technique
proposed in (Hebenstreit et al. 2011), which is based on the empirical observation of
two main RNA abundance classes. These two abundance classes can be characterized by
means of a gaussian mixture model of two components. After estimating the parameters
of the mixture model, it can be used to classify the genes as absent or present.

The fcap toolkit developed for this thesis implements the required code to determine
whether each gene is absent or present. However, it is important to first verify that the two
RNA abundance classes reported in (Hebenstreit et al. 2011) can also be observed here.

Figure 7.2 shows a KDE obtained from the binary logarithm of the RPKMs for the
TCGA’s KIRC data. Zero counts were excluded from the representation. The results
are very similar to those reported in (Hebenstreit et al. 2011), where two overlapping
components were identified: one associated to present genes centered at 4 approximately,
and another one at the left of it associated to absent genes. For our data, the estimation of
a two component gaussian mixture model determined that the group of present genes was
centered at 3.0, and that of absent genes at −1.6.

7.4.4 Tissue-Specific FBA of an Individual Sample
After verifying the correctness of the technique to identify absent and present genes, we
conducted an exploratory tissue-specific FBA on a single sample. The barcode of such
sample was TCGA.A3.3324.01A.02R.1325.07. However, it is important to stress out
that experiments with other samples produced very similar results to those reported below.

Statistics about Genes and Reactions

First, we obtained the set of absent and present genes. Figure 7.3 shows some statistics
about the number of genes contained in the KIRC and Recon 2 data. As it can be seen,
Recon 2 contains much less genes than KIRC. On the other hand, there were more present
genes than absent. This is in line with the densities shown in Figure 7.2 for the two RNA
abundance classes.
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Figure 7.2: KDE of the binary logarithm of the RPKMs for the KIRC data. Genes with
zero counts were excluded.

Table 7.5: Solution statistics after the application of tissue-specific FBA to KIRC’s sample
TCGA.A3.3324.01A.02R.1325.07. The gap tolerance was set to 0.01.

Objective function value 3 127

Solver effectiveness (%) 73.7

After obtaining the absent/present genes, we applied the gene to protein-reaction rules
contained in Recon 2, determining the sets of lowly and highly expressed reactions for the
specific sample. Figure 7.4 shows the main reaction statistics. As it can be seen, the highly
expressed reactions outnumbered the lowly expressed ones.

Tissue-Specific FBA Results

We used the lists of lowly and highly expressed reactions to perform tissue-specific FBA.
Table 7.5 shows the main statistics about the solution. As it can be seen, the value of the
objective function was equal to 3 127. This means that 3 127 of the reactions identified as
lowly or highly expressed retained this condition in the solution found by CPLEX. This
number divided by the sum of the sizes of the lower and highly expressed reactions sets
was used to compute a measure of the effectiveness of the solver. In this case, CPLEX
achieved an effectiveness equal to 73.7%. The remaining 26.3% of the reactions changed
its expression status in the final solution. Different explanations can be proposed for this
observation. Shlomi et al. 2008 suggest that this kind of changes can be due to post-
transcriptional regulatory effects. However, it is also possible that some reactions were
incorrectly classified as lowly or highly expressed and the solver changed their status in
the solution so as to avoid model inconsistencies.
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Figure 7.3: Basic statistics about genes in Recon 2 metabolic network and TCGA KIRC’s
sample TCGA.A3.3324.01A.02R.1325.07.
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Figure 7.4: Reaction statistics about genes regarding the application of tissue-specific
FBA to KIRC’s sample TCGA.A3.3324.01A.02R.1325.07.

The fluxes found by CPLEX when obtaining the optimal solution can be visualized by
means of the Escher tool. For this purpose, it was necessary to convert the fluxes calcu-
lated by CPLEX into JSON format. After that, the JSON file can be loaded with Escher
after selecting the appropriate map (see Section 5.1 for additional details). Figure 7.5
shows a representation of the fluxes associated to the tricarboxylic acid (TCA) cycle (also
known as the Krebs cycle) for the KIRC sample under study. Positive fluxes are shown in
red color, while negative ones are shown in blue.

Network Robustness

After performing the tissue-specific FBA procedure, we studied the robustness of the net-
work by means of FVA. Figure 7.6 shows a boxplot for the flux ranges. The γ parameter
was set to 0.9, and the gap tolerance to 0.01. As it can be seen, the results and conclusions
to be extracted are quite similar to those obtained when optimizing the Recon 2 biomass
function (see Figure 7.1). Specifically, the network showed a high degree of robustness.

On the other hand, FVA was even more computationally demanding in this case than
it was when optimizing the Recon 2 biomass function, since it involves solving thousands
of MIP problems. To accelerate the calculations, we used previously obtained solutions
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Figure 7.5: Escher representation of the metabolic fluxes for KIRC sample with code
TCGA.A3.3324.01A.02R.1325.07. The TCA cycle is shown. Positive fluxes are
shown in red and negative ones in blue.
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Figure 7.6: Boxplot for flux ranges when applying tissue-specific FBA over KIRC sample
TCGA.A3.3324.01A.02R.1325.07 and Recon 2 metabolic model. The γ parameter
was equal to 0.9 and the gap tolerance was set to 0.01.
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to initialize the solverh as it is proposed in (Gudmundsson and Thiele 2010) (see Sec-
tion 4.5.2 for more details). Table 7.6 shows the time cost in seconds of the algorithm
with γ = 0.9 and gap tolerance equal to 0.01. The table also shows the speedup for the
execution in 1, 2 and 4 computing nodes. For this experiment, the nodes were composed
of only 2 cores instead of 8, since the memory requirements of the solver were greater for
MIP problems. As it can be observed in the table, the time cost was substantially higher
than that required to perform FVA with the Recon 2 biomass function (see Table 7.4). By
contrast, the use of parallelism allowed us to obtain higher speedups. The reason for this
is that the time required for reading and writing files was lower in relation to the cost of
solving the MIP problems.

Table 7.6: Execution time in seconds and speedup when applying FVA tissue-specific
FBA over KIRC sample TCGA.A3.3324.01A.02R.1325.07 and Recon 2 metabolic
model. The value of the γ parameter was 0.9 and the gap tolerance was set to 0.01.
Computations were made in computer nodes composed of 2 cores.

Time (s) Speedup
FVA (1 node) 29 823 1.0
FVA (2 nodes) 18 233 1.6
FVA (4 nodes) 9 352 3.2

7.4.5 Tissue-Specific FBA of Multiple Samples
After reporting the tissue-specific FBA results for a single sample, we applied the tech-
nique to the whole set of samples. The goal of the analysis was to study the differences
in metabolic behavior for healthy and cancerous cells. For this purpose, we designed a
differential reaction expression experiment.

Experiment Design

There are two questions that should be answered so as to conduct the differential reaction
expression experiment. The first one is how do we measure reaction expression for each
sample. This decision is directly related to the second question. In particular, we should
also decide which hypothesis test will be appropriate to discover whether there are sta-
tistically significant differences between the measurements associated to the healthy cells
and those of the cancerous cells. The election of the hypothesis test will be influenced by
the nature of the measure used to represent reaction expression.

One straightforward approach to measure reaction expression for each sample is to
simply use the values of the fluxes that maximize the objective function of the tissue-
specific FBA procedure. However, the individual sample results reported above, and more
specifically the distribution of flux ranges shown in Figure 7.6, advise against this strat-
egy. As it can be observed in the figure, the median flux range while maintaining the
same value of the objective function is higher than 600, given a theoretical maximum of
2 000. This moves us to think that the flux magnitude is not an appropriate aspect to pay

hFor this purpose, it is necessary to write the so-called MIP start file using the CPLEX option write.
Such file is later read by the solver before processing the new MIP problem. In addition to this, enabling
the so-called polishing heuristic provided by CPLEX was also useful to reduce the time cost.
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attention to, due to its great variability. Instead, we propose to classify the fluxes into
three categories: inactive, active in the direct sense and active in the reverse sense. This
categorization allows us to work with more stable values while still capturing the most
essential information about the reactions. The categorization strategy can be based on the
thresholds imposed to the fluxes by the tissue-specific FBA technique (see Section 4.6.1).
In particular, a reaction was considered active if it carries a flux above a certain posi-
tive threshold ε (active in the direct sense) or below a negative threshold −ε (active in
the reverse sense), otherwise it is considered inactive. Following this criterion, we pro-
pose to represent reverse active, inactive and direct active reactions using the numbers
−1, 0 and 1, respectively.

As it was explained in Chapter 3, the well known Student’s t-test is typically used
when analyzing differential gene expression. The t-test assumes that the observed variable
is a normally distributed interval variablei. This assumption cannot be justified in our
case, since the representation of the metabolic information we propose is ordinal, i.e. it is
a categorical representation where the categories can be ordered. One hypothesis test that
can be applied under these circumstances is the Mann-Whitney U -test, which is a non-
parametric alternative to the t-test where the only assumption about the observed variable
is that it is at least ordinal.

Differential Reaction Expression Analysis

The 120 samples of the TCGA’s KIRC dataset selected for this work (60 cases and 60
controls) were integrated with the Recon 2 metabolic reconstruction so as to perform
tissue-specific FBA (again, a gap tolerance equal to 0.01 was used to solve the MIP prob-
lems). After calculating the flux values for all of the reactions, they were transformed
following the ordinal representation described above. The ordinal values were used to
conduct a Mann-Whitney U -test for each reaction, testing the null hypothesis that there is
no difference in reaction expression between healthy and cancerous cells. Afterwards, the
p-values returned by the U -test were corrected using the Benjamini-Hochberg procedure.

Table 7.7 shows the number of null hypotheses rejected by the hypothesis tests, with
and without p-value correction. As it can be seen, the Benjamini-Hochberg procedure
produces a significant reduction in the number of null hypothesis rejections. On the other
hand, Table 7.8 shows the five reactions with the lowest corrected p-value.

Table 7.7: Number of rejected null hypotheses (H0) for the differential reaction expression
experiment. Mann-Whitney U -test with and without Benjamini-Hochberg’s (BH) p-value
correction was used. The value of α was 0.05.

H0 Rejections
U -test 835
U -test + BH 428

Analyzing lists of differentially expressed reactions can be tedious due to the lack of
contextual information. One way to tackle this problem is by means of the graphical rep-
resentations of metabolism provided by Escher. In spite of the fact that Escher is intended
to be used for metabolic flux visualization, it is straightforward to adapt it for visualiz-
ing p-values instead of fluxes, using specific colors to highlight differentially expressed

iAn interval variable is a measurement where the difference between two values is meaningful.
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Table 7.8: List of the five reactions with lowest corrected p-value for the differential
reaction expression experiment.

Reaction p-value
NCCt 7.8 · 10−21
DCT 3.7 · 10−20
DM_melanin_c_ 3.7 · 10−20
DOPAQNISO1 3.7 · 10−20
TYRASE 3.7 · 10−20

reactions. To do this, flux values are replaced by p-values in the JSON file loaded by Es-
cher. After loading the file, the tool can be configured to display a specific color for those
reactions with small p-values. Figure 7.7 shows an example where the Escher’s retinol
metabolism diagram highlights the differentially expressed reactions using red color.

As it was explained in Section 5.1.3, Escher provides five different metabolic maps
related to human metabolism. These maps can be used to carry out a brief analysis of
metabolic subsystems presenting differentially expressed reactions:

• Amino acid metabolism: when displaying corrected p-values with Escher, differ-
entially expressed reactions can be found in the following subunits: glycine, serine
and theronine metabolism (e.g. SERHL, p-value=1.8 · 10−19), methionine and cys-
teine metabolism (e.g. 2AMACSULT, p-value=9.5 · 10−12) and finally, the urea cy-
cle (e.g. CBPSAM, p-value=1.6 ·10−5). By contrast, the following subunits showed
no statistically significant differences: valine, leucine and isoleucine degradation,
collagen degradation and lysine degradation.

• Carbohydrate metabolism: for this map, the following subsystems showed dif-
ferentially expressed reactions: glyoxilate metabolism (e.g. HPYRtp, pvalue=p-
value=1.0 · 10−9), pentose-phosphate pathway (e.g. PPM, p-value=9.4 · 10−5) ke-
togenesis (e.g. BDHm, p-value=1.6 · 10−5), TCA cycle (e.g. SUCOAS1m, p-
value=3.3 · 10−10), polysaccharide degradation (e.g. TREHe, p-value=3.6 · 10−6),
and itaconate and mesaconate metabolism (e.g. ITCOAL1m, p-value=0.029). Other
parts did not show statistically significant differences in reaction expression, includ-
ing metabolism of galactose, ascorbate, fructose, mannose, fucose, aminosugars,
nucleotide sugar, propanoate, inositol phosphate, glycogen and starch. Pentose and
glucoronate interconversions did not show differentially expressed reactions either.

• Glycolisis: this pathway is a subset of the carbohydrate metabolism.

• Inositol retinol metabolism: retinol metabolism presented differentially expressed
reactions (e.g. LRAT, p-value=0.0057) while inositol phosphate metabolism had
not any.

• Tryptophan metabolism: there were no differentially expressed reactions in tryp-
tophan metabolism.

A detailed study about the whole set of differentially expressed reactions that were
identified is beyond the scope of this work. However, it can be interesting to discuss a bit
more the results related to retinol metabolism, due its relationship with cell differentiation
and carcinogenesis.
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Figure 7.7: Escher’s plot for retinol metabolism. Differentially expressed reactions are
colored in red.

It is well known that retinoids, the family of molecules comprising the analogues of
retinol, play a major role in the control of both cellular differentiation and proliferation (R.
Blomhoff and H. K. Blomhoff 2006). Moreover, it has been shown that the metabolic
dysregulation of retinoic acid (a metabolite of retinol) is implicated in tumorigenesis (R.
Blomhoff and H. K. Blomhoff 2006; Osanai and Petkovich 2005). In our analysis, retinol
metabolism presented differentially expressed reactions. Specifically, there were four of
them: CAROtr, BCDO, LRAT and RETFA. Recent literature documents cases that link
the activity of LRAT to certain tumor types such as colorectal cancer (Brown et al. 2014).

7.4.6 Visualizing Metabolic Networks with Graphviz
Escher provides some pre-generated metabolic maps useful to study the results obtained
by means of FBA. However, as it was explained in Section 5.2, if we want a greater
versatility the use of interactive editors such as Escher may not be the best alternative.

fcap, the open-source toolkit we have developed for this work incorporates one tool
to automate the generation of metabolic maps by means of Graphviz. In particular, it pro-
cesses the information contained in a metabolic network reconstruction in SBML format,
such as the Recon 2 reconstruction, and generates a graph representing the different reac-
tions and metabolites contained in it. The tool is also able to display data associated to the
reactions, such as fluxes or p-values, using different colors depending on their magnitude.

Due to the fact that regular metabolic reconstructions have thousands of reactions and
metabolites, representing them in a single diagram would not produce intelligible results.
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To tackle this problem, the tool also accepts as input a list of the specific reactions that
we want to see in the diagram. In addition to this, the final output can also be improved
by providing a list identifying which metabolites are external (e.g. H2O).

Figure 7.8 shows a diagram of the TCA cycle using our tool. In particular, the flux
values for the KIRC sample with code TCGA.A3.3324.01A.02R.1325.07 are depicted
(the result can be compared with the corresponding Escher diagram shown in Figure 7.5).
Positive fluxes are shown in red and negative ones in blue. Arrows always show reaction
senses in direct order according to the stoichiometric coefficients. Therefore, when a
given flux is negative in the picture, it should be taken into account that its associated
reaction is working in reverse mode. A list of external metabolites were used to obtain
a more clear diagram. As it can be seen, the result was fairly acceptable despite the fact
that no human intervention was required to generate the plot.
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Figure 7.8: fcap representation using Graphviz of the metabolic fluxes for KIRC sam-
ple with code TCGA.A3.3324.01A.02R.1325.07. The picture shows the TCA cycle.
Positive fluxes are displayed in red and negative ones in blue. Arrows shows the sense
of the reactions in direct order as given by stoichiometric coefficients. Reactions with a
negative flux are working in reverse mode.
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Obtaining good representation results in an automated manner becomes difficult when
the number of network elements is increased. To test this circumstance, we represented
the p-values obtained when applying tissue-specific FBA to the KIRC samples, focusing
on retinol metabolism. Figure 7.9 shows the resulting diagram, which can be compared
with that provided by Escher (see Figure 7.7). In this case, the result is still intelligible,
but could be improved by manually editing the diagram.

7.4.7 Reducing Metabolic Networks
In the previous section, we have used Graphviz to obtain automated representations of
small metabolic networks. Such small networks can be seen as biological subsystems
that are easier to be studied in an isolated manner. However, it could also be interesting
to see additional context information for the subsystems by adding a limited and con-
trolled number of network elements. For this purpose, it can be useful to apply a network
reducing algorithm such as NetworkReducer, which was described in Section 5.3.

fcap, the software package created for this thesis implements the fast version of Net-
workReducer we have proposed (see Algorithm 5.2), which is more appropriate to handle
the large metabolic network contained in Recon 2. The algorithm works by iteratively
removing reactions from the network while ensuring that some protected elements are re-
tained. At each iteration, the reaction with lowest flux range from a randomly selected
subset according to the FVA procedure is removed. NetworkReducer can be used to gen-
erate representations of biological subsystems incorporating additional context informa-
tion. In particular, we can provide the whole Recon 2 network as input for the algorithm,
defining the reactions that compose the biological subsystem of interest (e.g. the retinol
metabolism) as protected reactions. The algorithm can be executed until the resulting
network only contains the reactions of the protected subsystem. Intermediate results can
be saved to disk and graphically represented, so as to gain knowledge about additional
biological subsystems that may be related to that being studied.

Figure 7.10 shows different reduced networks obtained when applying NetworkRe-
ducer to Recon 2 using the set of reactions that compose retinol metabolism as pro-
tected reactions. Specifically, the networks were represented every 200 algorithm iter-
ations ranging from 6 200 to 7 200. The reaction with lowest flux range when maximizing
the biomass function was removed at each iteration. The plots display reactions outside
retinol metabolism in gray color. On the other hand, differentially and non-differentially
expressed retinol metabolism reactions were represented using red and blue colors, re-
spectively. As it can be observed, reactions appear concentrated in a few dense areas. The
reduction algorithm tends to retain such areas while removing isolated reactions. This is
due to the fact that those reactions with lowest flux ranges are eliminated first. Isolated re-
actions typically have lower flux ranges since there are no other reactions in their vicinity
able to balance the flow of metabolites.

To finish the analysis, we also inspected in more detail the network obtained after
executing 7 200 iterations of the NetworkReducer algorithm. In particular, we added cor-
rected p-values and reaction names to the diagram shown in Figure 7.10f, looking for
differentially expressed reactions outside (but in the vicinity of) retinol metabolism. One
example of such reactions was CHOLtu (p-value=4.2 · 10−6), which is related to the ex-
tracellular transport of choline. Choline is a water-soluble nutrient that is involved in the
biosynthesis of cell membranes. Abnormalities in choline processing have been identified
as tumor biomarkers (Gillies and Morse 2005).
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Figure 7.9: fcap’s plot for retinol metabolism showing the corrected p-values for each
reaction. Differentially expressed reactions are colored in red (α was equal to 0.05).
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(a) Reduced network after 6200 iterations (b) Reduced network after 6400 iterations

(c) Reduced network after 6600 iterations (d) Reduced network after 6800 iterations

(e) Reduced network after 7000 iterations (f) Reduced network after 7200 iterations

Figure 7.10: Result of applying the NetworkReducer algorithm to the Recon 2 metabolic
model, using the reactions contained in the Escher’s retinol metabolism map as protected
reactions. Reduced networks after executing a varying number of algorithm iterations are
shown. Gray color is used to represent reactions not belonging to retinol metabolism.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

THIS chapter summarizes the main findings of our systems biology study on cancer
metabolism. Such findings are used to draw general conclusions as well as to iden-

tify further research lines and improvements in current work that we plan to develop in
the future.

8.1 Conclusions
Chapter 2 was devoted to describe the goals pursued in this work. These goals were
classified into scientific ([SC]) and technologic ([TC]) goals. Below we describe the
main results obtained for each of them:

• Integration of transcriptomic and metabolic information using FBA [SC]

At the beginning of this document, we mentioned the great importance of data in-
tegration within the discipline of systems biology. In our experiments we have suc-
cessfully integrated RNA-Seq data of healthy and cancerous kidney cells coming
from TCGA database with the human metabolic model contained in Recon 2. For
this purpose, first we determined the list of absent and present genes for each sam-
ple by identifying two different messenger RNA abundance classes. Second, we
obtained lists of lowly and highly expressed reactions by applying gene to protein-
reactions rules. Third, tissue-specific FBA was applied to compute a mathematical
model of human metabolism taking as input the lists of lowly and highly expressed
reactions as well as the steady state and flux range constraints stored in Recon 2. In
addition to this, after obtaining the solution for the FBA problem, FVA was used to
study the robustness of the metabolic model.

• Review of available software for FBA [TC]

Sophisticated mathematical optimization tools called solvers are required to find so-
lutions for the linear and integer programming problems that arise when FBA is ap-
plied. In this work we have tested four of them: GLPSOL, CLP, CBC and CPLEX.
GLPSOL, CLP and CPLEX were applied to solve the linear programming problem
derived from maximizing the Recon 2’s biomass function. The three solvers were
able to find the optimal solution in fractions of a second. On the other hand, GLP-
SOL, CBC and CPLEX were used to deal with the integer programming problems
posed by tissue-specific FBA. In this case, CPLEX was clearly the fastest alterna-
tive requiring around 10 seconds to solve each problem, followed by CBC, which
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spent 800 seconds. By contrast GLPSOL was not able to find the solutions in rea-
sonable time. In addition to this, it was possible to greatly reduce the time cost of
CBC by allowing the algorithm to obtain suboptimal solutions. This finding was
particularly relevant due to the fact that CPLEX is a commercial tool providing re-
strictive license conditions while CBC is part of an open-source software initiative.

• Statistical analysis of FBA results [SC]

To be able to compare metabolism of normal and cancerous cells we devised a
differential reaction expression experiment. In particular, flux values obtained by
means of tissue-specific FBA for the different samples were converted into ordinal
values representing reactions that are inactive, active in the direct sense or active in
the reverse sense. Afterwards, the transformed values were analyzed by means of
the Mann-Whitney’s U -test, obtaining a set of p-values that were corrected using
the Benjamini-Hochberg procedure. The ordinal representation was used due to the
great variability shown by the network fluxes. Since common hypothesis tests such
as the t-test are not designed to work with ordinal variables, we chose the U -test
instead, which does not have this restriction.

• Visualization techniques for FBA results [SC]

Visualization plays an important role in the analysis of systems biology results,
making them easier to interpret. In this thesis we have tackled the visualization
problem by means of the pre-generated maps provided by Escher and also with
maps created in an automatic manner using Graphviz. Escher was applied to rep-
resent FBA fluxes as well as the p-values of our differential reaction expression
experiment. Escher proved to be very useful to analyze the biological subsystems
contained in its maps. On the other hand, Graphviz was fairly effective to represent
small networks such as the TCA cycle, generating diagrams comparable to those
of Escher. In contrast to this, the results were less intelligible for greater networks
like that of retinol metabolism. However, a very interesting application of Graphviz
was the representation of reduced networks obtained with the NetworkReducer al-
gorithm. Specifically, NetworkReducer was used to generate networks containing
the reactions related to retinol metabolism and also additional context information
in the form of reactions belonging to other metabolic subsystems in the vicinity. The
resulting networks were represented in an automated manner by means of Graphviz.
This functionality could not be obtained when using Escher.

• Comparison between normal and cancer metabolism [SC]

The differential reaction expression experiment we designed for this thesis allowed
us to discover alterations in different metabolic subsystems when comparing healthy
and cancerous samples. Such alterations were present in specific parts of the amino-
acid, carbohydrate and retinol metabolisms. Retinol metabolism is particularly
interesting from the perspective of this work due to its well known relationship
with cell growth and proliferation. The LRAT reaction belonging to retinol me-
tabolism was identified as differentially expressed, in line with certain cancer stud-
ies presented in the literature. The study of additional reactions in the vicinity of
retinol metabolism using Graphviz revealed another differentially expressed reac-
tion, CHOLtu, related to extracellular transport of choline. This also coincides with
existing works in the literature that establish a link between cancer and abnormali-
ties in choline processing.
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• Development of open-source software for FBA [TC]

For this thesis we have developed an open-source software package called Flux
Capacitor or fcap. Flux Capacitor includes many features useful to carry out FBA,
network visualization and statistical testing. A detailed description of the toolkit is
provided in Appendix A.

8.2 Future Work
After enumerating the main achievements of this thesis, we identify the following direc-
tions for future developments:

• More detailed analysis of tissue-specific FBA results:

The tissue-specific FBA study comparing metabolism of healthy and cancerous
cells presented here can be extended in many ways. First, the whole list of dif-
ferentially expressed reactions as well as its representation by means of Graphviz
and Escher could be the subject of a detailed analysis under a strictly biological
point of view, aspect that was beyond the scope of this work. Second, it would
be important to perform a differential gene expression analysis complementing the
results presented in this thesis, which were strictly focused on studying metabolic
reactions. Third, due to the crucial role played by the lists of lowly and highly ex-
pressed reactions in the results obtained by tissue-specific FBA, it would also be
interesting to conduct a systematic analysis for the different reactions, obtaining
detailed statistics about the process by which they were considered as active or in-
active. This process depends on things such as whether a given reaction is affected
by a gene-protein-reaction association or if the solver needed to change the initial
status assigned to a reaction to satisfy the problem constraints.

• Better network representations using Graphviz:

Network representations generated with Graphviz were not as good as those pro-
vided by Escher when the number of network elements was increased. Graphviz
includes some features not exploited here that could be useful to improve the qual-
ity of the diagrams. One of these features is to use subgraphs as a way to cluster
sets of related reactions and metabolites. When drawing a specific network, the
visualization tool could receive as input parameter the different sets in which the
reactions to be represented are clustered, and use this information to structure the
diagram.

• Further experiments with NetworkReducer:

In this work we have presented preliminary experiments using the NetworkReducer
algorithm. These experiments can be extended to other metabolic maps, such as
those provided by Escher. In addition to this, it could be interesting to change
the criterion used by the algorithm to remove reactions at each iteration. Here we
have selected those reactions with lowest flux range as candidates to be removed,
resulting in an algorithm that tends to preserve areas with a high density of reactions
instead of areas with isolated ones. If the criterion was reversed, that is, removing
reactions with highest flux ranges first, then the resulting network would contain
reactions whose flux could not easily change. In other words, it would be composed
of essential reactions.

63



Chapter 8. Conclusions and Future Work

• Improvements and extensions in Flux Capacitor:

The software developed for this thesis can be improved and extended in many dif-
ferent ways. One negative aspect of the package are its multiple dependencies with
existing software, including several R and Python modules. It would be interest-
ing to reduce such dependencies, or even to simplify the package design by totally
removing the use of one of the two above mentioned languages. Using only one
programming language would also allow to develop an interactive mode to access
the toolkit functionality in parallel to the batch-oriented processing currently im-
plemented. Finally, Flux Capacitor is strongly focused on the use of CPLEX as
mathematical solver, which is distributed in a commercial package. CPLEX could
be replaced by the freely available solvers CLP and CBC. In spite of the fact that
CPLEX is the fastest option, both CLP and CBC have demonstrated to work fast
enough when the appropriate parameters are used.
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APPENDIX A
OPEN-SOURCE SOFTWARE

OPEN-SOURCE software allows the rapid propagation of new ideas in a research
context. For this thesis we have developed Flux Capacitor or fcap, an open-source

software package for systems biology.

A.1 Introduction
fcap is focused on the application of FBA to study metabolism. The toolkit is currently
under development. Below there is a list of its main functionalities:

• FBA: the toolkit implements FBA (see Section 4.4) for metabolic models given in
SBML format, maximizing the biomass function and returning the flux values that
correspond to the optimal solution.

• FVA: a parallel version of the FVA procedure (see Section 4.5) is included. fcap
also incorporates the techniques proposed in (Gudmundsson and Thiele 2010) to
accelerate the calculations (see Section 4.5.2 for more details).

• Tissue-specific FBA: the package provides an implementation of the tissue-specific
FBA procedure proposed by Shlomi et al. 2008 (see Section 4.6). The application
of tissue-specific FBA requires the generation of lists of lowly and highly expressed
reactions. As it was explained, the procedure required to obtain such lists depends
on whether the gene expression data comes from a microarray experiment (see Sec-
tion 4.6.2) or from an RNA-Seq experiment (see Section 4.6.3). fcap implements
both procedures.

• Statistical testing: fcap allows to apply statistical hypothesis tests for case/control
samples. In particular, the t-test and the Mann-Whitney’s U -test can be executed.

• Network visualization: the package allows to generate automated graphical rep-
resentations of metabolic networks in SBML format. For this purpose, the open-
source graph visualization tool called Graphviz is used (see Section 5.2).

• Network reduction: fcap includes an implementation of the NetworkReducer al-
gorithm proposed by Erdrich et al. 2015 (see Section 5.3.1) as well as a fast version
of it specifically proposed in this work (see Section 5.3.2).
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A.2 Distribution Details
fcap has been coded in Python, R, shell-scripting and C++. It can be compiled on UNIX-
like and Windows (using Cygwin) systems.

fcap is released under the GNU Lesser General Public Licensea (LGPL), allowing
other developers and companies to use and integrate the package into their own software
without requiring that such software is also LGPL-licensed.

A.3 Installation
The code of the fcap toolkit is hosted on githubb. To install fcap, first it is necessary
to install the autotools (autoconf, autoconf-archive, automake and libtool packages in
Ubuntu). If fcap is to be used on a Windows platform, the Cygwin environmentc should
be installed.

Once the autotools are available (as well as other required software such as Cygwin),
the user can proceed with the installation of fcap by following the next sequence of steps:

1. Obtain the package using git:

$ git clone https://github.com/daormar/flux-capacitor.git

Additionally, fcap can be downloaded in a zip filed.

2. cd to the directory containing the package’s source code and type ./reconf .

3. Type ./configure to configure the package.

4. Type make to compile the package.

5. Type make install to install the programs and any data files and documenta-
tion.

6. You can remove the program binaries and object files from the source code directory
by typing make clean .

By default the files are installed under the /usr/local directory (or similar, depend-
ing of the OS you use); however, since Step 5 requires root privileges, another directory
can be specified during Step 3 by typing:

$ configure --prefix=<absolute-installation-path>

Additionally, fcap internally uses CPLEX as a mathematical solver to obtain the
solutions required by FBA and FVA procedures. Therefore, users also need to install this
package to be able to access most of the functionality of the toolkit.

ahttps://www.gnu.org/copyleft/lgpl.html
bhttps://github.com/daormar/flux-capacitor/
chttps://www.cygwin.com/
dhttps://github.com/daormar/flux-capacitor/archive/master.zip
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A.4. Main Tools

A.4 Main Tools
The functionality of fcap is provided by means of a set of tools executing modular tasks.
Next, we provide a list of the most important of such tools, briefly describing the input
parameters they expect as well as their dependencies with other software (if any):

• extract_sbml_model_info: extracts information from a metabolic model in
SBML format. The program takes as input a file in SBML format and generates a
list of text files with varied information (reaction and metabolite names, stoichio-
metric matrix, etc.). It is implemented in R and requires the sybilSBML library.

• auto_fba: automates an FBA procedure. The tool receives as input the name of
the SBML file containing the metabolic model and the type of optimization to be
computed: biomass function or tissue-specific. If tissue-specific FBA is to be ap-
plied, then the program requires transcriptomic information, that can be provided as
a set of CEL files for microarray data or as a file with RNA-Seq counts. auto_fba
is implemented as a UNIX shell script.

• auto_fva: automates a whole FVA procedure. The program takes as input the pre-
fix of the files in lp format representing the initial FBA problem to be solved (they
are obtained by means of the auto_fba tool). In addition to this, auto_fva also
takes additional parameters to control process efficiency. This tool is implemented
as a UNIX shell script.

• test_samples: performs statistical tests for a set of samples classified into cases
and controls. The tool expects as input a CSV file with the sample data and another
one with the phenotype data. test_samples is a Python program using the scipy
and the statsmodels modules.

• correct_pvalues: corrects a set of p-values using the Benjamini-Hochberg pro-
cedure. It receives as input a file with p-values generated by means of test_samples
and the value of α. The tool is written in Python and uses the statsmodels

module.

• plot_metab_network: generates files in Graphviz format representing metabolic
networks. Such files can later be converted to graphics files in different formats.
The tool takes as input the plot type to be generated, the prefix of a series of files rep-
resenting the metabolic network generated with the extract_sbml_model_info
tool, a file containing the identifiers of the reactions to be included in the plot,
another file with data about the reactions (e.g. flux values, p-values) and optionally,
a list of identifiers of external metabolites. plot_metab_network is written in
Python.

• network_reducer: reduces the number of elements of a metabolic network. It is
designed to work with the output of the auto_fba tool. Its basic input parameters
are those enumerated in Algorithm 5.2. network_reducer is a UNIX shell script.

All of the tools included in the package can display help messages describing their
expected input parameters.
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