Thot Toolkit for Statistical Machine Translation

User Manual

Daniel Ortiz Martinez
daniel.ortiz.phd @ gmail.com

August 2018

2

3

CONTENTS

1 Introduction 1
1.1 Statistical Foundations 1
1.1.1 Statistical Machine Translation 1

1.1.2 Computer-Aided Translation 2

1.2 ToolkitFeatures 4
1.3 Distribution Details L o 5
1.4 Relation with Existing Software 5
15 CurrentStatus 5
1.6 Documentation and Support 6
1.7 Citation e e 7
1.8 Sponsors. 8
Installation 9
2.1 Basic Installation Procedureo 0oL 9
2.2 Alternative Installation Options 10
2.3 Third Party Software 11
23.1 LevelDB Library 11

232 KenLMULibrary o 12

233 BerkeleyDBLibrary 12

234 CasMaCatWorkbench 13

235 CppUnit. oo e 13

2.4 Checking Package Installation 13
2.5 AddThottothe System PATH 13
User Guide 15
3.1 ToolkitOverview e 15
32 CorpusPartition o 16
3.3 File Naming Conventionso v 17
3.4 Corpus Preprocessing Tools 17
34.1 Tokenization 18

342 Lowercasing i it e e e e 18

343 CorpusCleaning 18

3.5 Training and Tuning Tools 19
3.5.1 Language Model Training 19

3.5.2 Translation Model Training 20

3.5.3 Basic Configuration File Generation 21

354 Parameter Tuning 22

3.5.5 Phrase Model Filtering, 23

il

Contents

36 SearchTools.
3.6.1 Fully Automatic Translation
3.6.2 Interactive Machine Translation
3.6.3 Phrase Alignment Generation
3.7 Output Postprocessing Tools
37.1 Recasing
3.7.2 Detokenization
3.8 Additional Tools
3.8.1 Output Evaluation
3.8.2 Automatization of Translation Experiments
3.9 Advanced Functionality
39.1 OnlineLearning
3.9.2 Online Learning From Scratch
3.9.3 Accessing Language Model Parameters From Disk
394 Accessing Phrase Model Parameters From Disk
3.9.5 Using Multiple Language Models
39.6 Using Multiple Phrase Models
3.9.7 Forcing Translations for Source Phrases
3.10 Changing Configuration Through master.iniFile
3.11 General Sample Uses
3.11.1 Training, Tuning and Translating
3.11.2 Online Learning
3.12 Troubleshooting e
4 Code Guide
4.1 Brief Introduction to Autotools o oo L.
4.2 Main Base Classes Usedin Thot
4.2.1 Base Classes for Statistical Machine Translation
4.2.2 Base Classes Specific for Interactive Machine Translation
43 Themaster.iniFile.
44 Model Descriptor Files
4.5 Main Binary Programs Providedby Thot
4.6 The ThotDecoder Class
47 UnitTesting e

5 Background

Bibliography

A List of Thot modules

iv

39
39
40
40
41
41
42
42
43
44

45

47

49

CHAPTER 1

INTRODUCTION

Thot is an open source toolkit for statistical machine translation. Originally, Thot incorpo-
rated tools to train phrase-based models. The new version of Thot now includes a state-of-the-
art phrase-based translation decoder as well as tools to estimate all of the models involved in
the translation process. In addition to this, Thot is also able to incrementally update its mod-
els in real time after presenting an individual sentence pair (also known as online learning or
adaptive machine translation).

1.1 Statistical Foundations

In this section, the foundations of statistical machine translation and its use in computer-aided
applications are very briefly described.

1.1.1 Statistical Machine Translation

The statistical approach to MT formalises the problem of generating translations under a
statistical point of view. More formally, given a source sentence f{ = fi...f;...f in the
source language F, we want to find its equivalent target sentence el = e;...e;...e;* in the
target language).

From the set of all possible sentences of the target language, we are interested in the one

with the highest probability according to the following equation:

é{ = argmax{Pr(el | f{)} (1.1)

1
Iej

where Pr(el | f{) represents the probability of translating f{ into ef.

The early works on SMT were based on the use of generative models. A generative model
is a full probability model of all statistical variables that are required to randomly generating
observable data. Generative models decompose Pr(e! | fi) applying the Bayes decision

f; and e; note the 4’th word and the j’th word of the sentences f1J and e{ respectively.

Chapter 1. Introduction

rule. Taking into account that Pr(f;{) does not depend on e! we arrive to the following
expression (Brown et al. 1993):

é1 = argmax{Pr(er) - Pr(f{ | e1)} (12)

where: Pr(el) represents the probability of generating the target sentence, and Pr(fi|el)
is the probability of generating e! given f; . Since the real probability distributions Pr(ef)
and Pr(f{|el) are not known, they are approximated by means of parametric statistical
models. Specifically, Pr(el) is modelled by means of a language model, and Pr(f{ |el)
is modelled by means of a translation model. Current MT systems are based on the use of
phrase-based models (Koehn et al. 2003) as translation models. Typically, the values of the
parameters of such statistical models are obtained by means of the well-known maximum-
likelihood estimation method.

More recently, alternative formalizations have been proposed. Such formalizations are
based on the direct modelling of the posterior probability Pr(el|f{), replacing the gener-
ative models by discriminative models. Log-linear models use a set of feature functions
hom(f{,el) each one with its corresponding weight \,,,:

M
é{ = argmax{ Z)\mhm(fl‘],e{)} (1.3)

I
Le; m=1

The direct optimization of the posterior probability in the Bayes decision rule is referred to
as discriminative training (Ney 1995). Since the features of regular SMT log-linear models
are usually implemented by means of generative models, discriminative training is applied
here only to estimate the weights involved in the log-linear combination. This process is
typically carried out by means of the minimum error rate training (MERT) algorithm (Och
2003).

1.1.2 Computer-Aided Translation

Despite multiple and important advances obtained so far in the field of SMT, current MT
systems are in many cases not able to produce ready-to-use texts. Indeed, MT systems usually
require human intervention in order to achieve high-quality translations. Here we consider
two different types of computer-aided translation applications based on SMT: post-editing
and interactive machine translation.

Post-Editing the Output of Statistical Machine Translation

Post-editing (PE) involves making corrections and amendments to machine generated trans-
lations (see (TAUS-Project 2010) for a detailed study). PE is used when raw machine transla-
tion is not error-free, situation which is common for current MT technology. PE started being
used in the late seventies mainly at some big institutions (such as the European Commission)
and is currently gaining acceptance from translation companies. Currently, PE tends to be
carried out via tools built for editing human generated translations, such as translation mem-
ories (some authors refer to this task as simply editing). In addition to this, new translation

2

1.1. Statistical Foundations

memory tools and new versions of established ones offer translators the option to post-edit
machine generated text for segments lacking any matches in the memories (Garcia 2011).

Since in the PE scenario, the user only edits the output of the MT system without further
intervention from the system, there are no differences in the way in which the MT system is
designed and implemented. Hence, the statistical framework for MT described above can be
adopted without modifications in order to build the PE system.

Statistical Interactive Machine Translation

The interactive machine translation (IMT) framework constitutes an alternative to fully au-
tomatic MT systems in which the MT system and its user collaborate to generate correct
translations. These correct translations are generated in a series of interactions between the
ITP system and its user. Specifically, at each interaction of the ITP process, the ITP system
generates a translation of the source sentence which can be partially or completely accepted
and corrected by the user of the ITP system. Each partially corrected text segment (referred to
from now on as prefix), is then used by the SMT system as additional information to generate
better translation suggestions.

An example of a typical ITP session is shown in Figure 1.1. In interaction-0, the system
suggests a translation (s). In interaction-1, the user moves the mouse to accept the prefix
composed of the first eight characters “To view ” (p) and presses the IE] key (k), then the
system suggests completing the sentence with “list of resources” (a new s). Interactions 2
and 3 are similar. In the final interaction, the user completely accepts the current suggestion.

Figure 1.1: ITP session to translate a Spanish sentence into English.

source(f;): Para ver la lista de recursos
reference(é!): To view a listing of resources

interaction-0 | P . .
s | To view the resources list
p | To view
interaction-1 | k [a]
s list of resources
p | To view a list
interaction-2 | g @
s ng resources
p | To view a listing
interaction-3 | k [o]
s f resources
acceptance p | To view a listing of resources

Figure 1.2 shows a schematic view of these ideas. Here, f{ is the input sentence and e! is
the output derived by the ITP system from f;’. By observing f{ and e!, the user interacts with
the ITP system, validating prefixes and/or pressing keys (k) corresponding to the next correct

character, until the desired output é/ is produced. The models used by the ITP system are

Chapter 1. Introduction

obtained through a classical batch training process from a previously given training sequence
of pairs (f,,, e,) from the task being considered.

I
i €

k| feedback/interactions

J Interactive éf
SMT System

Figure 1.2: An Interactive SMT system.

More formally, in the ITP scenario we have to find an extension s for a prefix p given by
the user:

8 = argmax {p(s | f{,p)} (1.4)
Applying the Bayes rule, we arrive at the following expression:

8 =argmax {p(s | p) - p(fi | p.9)} (1.5)

where the term p(p) has been dropped since it does not depend on s.

Thus, the search is restricted to those sentences e{ which contain p as prefix. It is also
worth mentioning that the similarities between Equation (1.5) and Equation (1.2) (note that
ps = el) allow us to use the same models if the search procedures are adequately modi-
fied (Bender et al. 2005; Barrachina et al. 2009).

1.2 Toolkit Features

The toolkit includes the following features:
* Phrase-based statistical machine translation decoder.
* Computer-aided translation (post-edition and interactive machine translation).

* Incremental estimation of statistical models (adaptive machine translation).

1.3. Distribution Details

* Client-server implementation of the translation functionality.

* Single word alignment model estimation using the incremental EM algorithm.

Scalable and parallel model estimation algorithms using Map-Reduce.
* Compiles on Unix-like and Windows (using Cygwin) systems.

« Integration with the CasMaCat Workbench developed in the EU FP7 CasMaCat project®.

1.3 Distribution Details

Thot has been coded using C, C++, Python and shell scripting. Thot is known to compile on
Unix-like and Windows (using Cygwin) systems. As future work we plan to port the code
to other platforms. See Section 1.6 section of this file if you experience problems during
compilation.

It is released under the GNU Lesser General Public License (LGPL)°.

1.4 Relation with Existing Software

Due to the strong focus of Thot on online and incremental learning, it includes its own pro-
grams to carry out language and translation model estimation. Specifically, Thot includes
tools to work with n-gram language models based on incrementally updateable sufficient
statistics. On the other hand, Thot also includes a set of tools and a whole software library to
estimate IBM 1, IBM 2 and HMM-based word alignment models. The estimation process can
be carried out using batch and incremental EM algorithms. This functionality is not based on
the standard GIZA++ software for word alignment model generation.

Additionally, Thot does not use any code from other existing translation tools. In this
regard, Thot tries to offer its own view of the process of statistical machine translation, with
a strong focus on online learning and also incorporating interactive machine translation func-
tionality. Another interesting feature of the toolkit is its stable and robust translation server.

1.5 Current Status

The Thot toolkit is under development. Original public versions of Thot date back to 2005 (Or-
tiz et al. 2005) and did only include estimation of phrase-based models. By contrast, current
version offers several new features that had not been previously incorporated.

A basic usage manual is currently being developed. In addition to this, a set of specific
tools to ease the process of making SMT experiments has been created.

In addition to the basic usage manual, there are some toolkit extensions that will be in-
corporated in the next months:

Phttp://www.casmacat .eu/
‘http://www.gnu.org/copyleft/lgpl.html

http://www.casmacat.eu/
http://www.gnu.org/copyleft/lgpl.html

Chapter 1. Introduction

* Improved management of concurrency in the Thot translation server (concurrent trans-

lation processes are currently handled with mutual exclusion) [STATUS: implementation
finished]

* Virtualized language models, i.e. accessing language model parameters from disk

[STATUS: implementation finished]

* Interpolation of language and translation models [STATUS: implementation finished]

Finally, here is a list of known issues with the Thot toolkit that are currently being ad-
dressed:

* Phrase model training is based on HMM-based alignments models estimated by means

1.6

of incremental EM. This estimation process is computationally demanding and cur-
rently constitutes a bottleneck when training phrase models from large corpora. One
already implemented solution is to carry out the estimation in multiple processors.
Another solution is to replace HMM-based models by IBM 2 Models, which can be
estimated very efficiently. However, we are also investigating alternative optimization
techniques that allow us to efficiently execute the estimation process of HMM-based
models in a single processor [STATUS: under development, although code is much faster
now]

Log-linear model weight adjustment is carried out by means of the downhill simplex
algorithm, which is very slow. Downhill simplex will be replaced by a more efficient
technique [STATUS: issue solved]

Non-monotonic translation is not yet sufficiently tested, specially with complex cor-
pora such as Europarl [STATUS: under development]

Documentation and Support

Project documentation is being developed. Such documentation include:

L]

Thot websited.
The Thot manual (thot_manual .pdf under the doc directory).
Quick user guide®.

Seminar about statistical machine translation and Thot .

If you need additional help, you can:

use the github issue tracker®.

dhttp://daormar.github.io/thot/
fhttp://daormar.github.io/thot/docsupport/thot_quick_guide.pdf
fhttp://daormar.github.io/thot/docsupport/thot_seminar.pdf
ghttps://github.com/daormar/thot/issues

http://daormar.github.io/thot/
http://daormar.github.io/thot/docsupport/thot_quick_guide.pdf
http://daormar.github.io/thot/docsupport/thot_seminar.pdf
https://github.com/daormar/thot/issues

1.7. Citation

« send an e-mail to the author”.

* join the CasMaCat support group'.
Additional information about the theoretical foundations of Thot can be found in:

e Daniel Ortiz-Martinez. Advances in Fully-Automatic and Interactive Phrase-Based
Statistical Machine Translation. PhD Thesis. Universitat Politécnica de Valéncia.
Advisors: Ismael Garcia Varea and Francisco Casacuberta. 2011.

One interesting feature of Thot incremental (or online) estimation of statistical models,
is also described in the following paper:

* Daniel Ortiz-Martinez, Ismael Garcia-Varea, Francisco Casacuberta. Online learning
for interactive statistical machine translation. In Proc. of the North American Chap-
ter of the Association for Computational Linguistics - Human Language Technologies
(NAACL-HLT), pp. 546-554, Los Angeles, US, June 2010.

The phrase-level alignment generation functionality is described in:

* Daniel Ortiz-Martinez, Ismael Garcia-Varea, Francisco Casacuberta. Phrase-level align-
ment generation using a smoothed loglinear phrase-based statistical alignment model.
In Proc. of the European Association for Machine Translation (EAMT), pp. 160-169,
Hamburg, Germany, 2008. Best paper award.

Finally, the initial version of Thot was described in:

¢ Daniel Ortiz-Martinez, Ismael Garcia-Varea, Francisco Casacuberta. Thot: a toolkit to
train phrase-based models for statistical machine translation. In Proc. of the Tenth
Machine Translation Summit (MT-Summit), Phuket, Thailand, September 2005.

1.7 Citation

You are welcome to use the code under the terms of the license for research or commercial
purposes, however please acknowledge its use with a citation:

e Daniel Ortiz-Martinez, Francisco Casacuberta. The New Thot Toolkit for Fully Auto-
matic and Interactive Statistical Machine Translation. In Proc. of the 14th Annual
Meeting of the European Association for Computational Linguistics (ACL): System
Demonstrations, pp. 4548, Gothenburg, Sweden, April 2014.

Here is a BiBTeX entry:

hdaniel.o@webintepret.com
'http://groups.google.com/group/casmacat—-support/boxsubscribe

http://groups.google.com/group/casmacat-support/boxsubscribe

Chapter 1. Introduction

@InProceedings{Ortiz2014,
author = {D. Ortiz-Mart\’{\i}nez and F. Casacuberta},
title = {The New Thot Toolkit for Fully Automatic and
Interactive Statistical Machine Translation},
booktitle = {1l4th Annual Meeting of the European Association for Computational
Linguistics: System Demonstrations},

year = {2014},

month = {April},

address = {Gothenburg, Sweden},
pages = "45--48"

1.8 Sponsors

Thot has been supported by the European Union under the CasMacCat research project. Thot
has also received support from the Spanish Government in a number of research projects,
such as the MIPRCV project! that belongs to the CONSOLIDER programme¥.

Jhttp://miprcv.iti.upv.es/
Khttp://www.ingenio2010.es/

http://miprcv.iti.upv.es/
http://www.ingenio2010.es/

CHAPTER 2

INSTALLATION

2.1 Basic Installation Procedure

The code of the Thot toolkit is hosted on github?. To install Thot, first you need to install the
autotools (autoconf, autoconf-archive, automake and libtool packages in Ubuntu). If you are
planning to use Thot on a Windows platform, you also need to install the Cygwin environ-
ment®. Alternatively, Thot can also be installed on Mac OS X systems using MacPorts.

On the other hand, Thot can be combined with third party software so as to enable ex-
tended functionality, see more information in Section 2.3.

Once the autotools are available (as well as other required software such as Cygwin,
MacPorts), the user can proceed with the installation of Thot by following the next sequence
of steps:

1. Obtain the package using git:

$ git clone https://github.com/daormar/thot.git

Additionally, Thot can be downloaded in a zip file¢.
2. cd to the directory containing the package’s source code and type ./reconf .
3. Type ./configure to configure the package.
4. Type make to compile the package.

5. Type make install to install the programs and any data files and documentation.

dhttps://github.com/daormar/thot/
bhttps://www.cygwin.com/

‘https://www.macports.org/
dhttps://github.com/daormar/thot/archive/master.zip

9

https://github.com/daormar/thot/
https://www.cygwin.com/
https://www.macports.org/
https://github.com/daormar/thot/archive/master.zip

Chapter 2. Installation

6. You can remove the program binaries and object files from the source code directory
by typing make clean .

By default the files are installed under the /usr/local directory (or similar, depending
of the OS you use); however, since Step 5 requires root privileges, another directory can be
specified during Step 3 by typing:

$ configure —--prefix=<absolute-installation-path>

For example, if user1 wants to install the Thot package in the directory /home /userl/thot,
the sequence of commands to execute should be the following:

$ make clean # This is recommended if the package has already been built
$./reconf

$ configure —--prefix=/home/userl/thot

$ make

$

make install

The installation process also creates three directories with additional information:

* ${PREFIX}/share/thot/cfg_templates: contains configuration files to be used
with different Thot utilities (see Chapter 3 for more details).

* ${PREFIX}/share/thot/doc: contains the documentation of Thot, which currently
consists in the Thot manual (thot_manual.pdf).

* ${PREFIX}/share/thot/toy_corpus: contains a very small parallel corpus to make
software tests. The directory includes both raw and preprocessed versions of the cor-
pus (see Sections 3.3 and 3.4 for more details). This corpus may also be useful for new
Thot users trying to get familiar with the toolkit functionality.

IMPORTANT NOTE: if Thot is being installed in a PBS cluster (a cluster providing
gsub and other related tools), it is important that the configure script is executed in the
main cluster node, so as to properly detect the cluster configuration (do not execute it in an
interactive session).

2.2 Alternative Installation Options

The Thot configure script can be used to modify the toolkit behavior. Here is a list of
current installation options:

10

2.3. Third Party Software

* ——enable-ibm2-alig: Thot currently uses HMM-based alignment models to obtain
the word alignment matrices required for phrase model estimation. One alternative in-
stallation option allows to replace HMM-based alignment models by IBM 2 alignment
models. IBM 2 alignment models can be estimated very efficiently without signifi-
cantly affecting translation quality.

* ——with-kenlm=<DIR>: installs Thot with the necessary code to combine it the with
the KenLLM library. <DIR> is the absolute path where the KenLM library was installed.
See more information below.

* ——with-casmacat=<DIR>: this option enables the configuration required for the
CasMaCat Workbench. <DIR> is the absolute path where the CasMaCat library was
installed. See more information below.

* ——enable-testing=<DIR>:his option enables the execution of unit tests using the
thot_test tool. Using this option requires the installation of the CppUnit library. For
more information, see the third party software Section below.

2.3 Third Party Software

Thot can currently be combined with third party software, extending its functionality. Below
we enumerate the list of packages currently supported.

2.3.1 LevelDB Library

LevelDBF is a key-value storage library providing an ordered mapping from string keys to
string values. LevelDB is used into Thot to handle language and translation model parameters
from disk. The advantage of doing this is a reduction of main memory requirements and
loading times for both kinds of models to virtually zero, at the cost of a small time overhead
incurred by disk usage.

One interesting aspect of using LevelDB to access models parameters that is not present in
other solutions implemented in the toolkit, including those based on the KenLLM and Berkeley
DB libraries described below, is that LevelDB allows to modify model parameters in a very
efficient way, in contrast to the models implemented by means of the alternative libraries,
where modifications are slow or simply not allowed.

To enable LevelDB in Thot it is necessary to install the library in a standard path before
executing configure. In operating systems where the apt tool is available, LevelDB can
be installed by means of the following command:

$ sudo apt install libleveldb-dev

https://github.com/google/leveldb

11

https://github.com/google/leveldb

Chapter 2. Installation

2.3.2 KenLM Library

The KenLM library" provides software to estimate, filter and query language models. KenLM
has been incorporated into Thot so as to enable access of language model parameters from
disk in a similar way to that described for the LevelDB library. However, KenLM language
models are static in contrast to the dynamic language models implemented by means of
LevelDB.
KenLLM library should be downloaded, compiled and installed before executing Thot’s
configure script. configure should be used with the --with-kenlm=<DIR> option,
where <DIR> is the directory where the library was installed. A specific version of KenLM
has been created with minor modifications focused on making the package easier to install.
The required sequences of commands is as follows:

$ mkdir kenlm ; cd kenlm

$ git clone https://github.com/daormar/kenlm.git repo

$ mkdir build ; cd build

$ cmake -DCMAKE_INSTALL_ PREFIX=../ ../repo

$ make

$ make install # Installs the library in the "kenlm" directory

For more information about how to use this functionality, please refer to Section 3.9.3.

2.3.3 Berkeley DB Library

Berkeley DBE? is a software library providing a high performance database for key/value data.
Berkeley DB can be combined with Thot so as to allow access to phrase model parameters
from disk. The purpose of this is to reduce main memory requirements and loading times in
the same way as was explained above for language models and KenL.M.

Berkeley DB library should be installed in a standard OS directory (such as /usr/local)
before the configure script is executed. In systems providing the apt tool, this can be
easily achieved with the following command:

$ sudo apt install libdb++-dev

For additional information about how to use this functionality, see Section 3.9.4.

fhttps://kheafield.com/code/kenlm/
ehttp://www.oracle.com/technetwork/database/database-technologies/
berkeleydb/overview/index.html

12

https://kheafield.com/code/kenlm/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

2.4. Checking Package Installation

2.3.4 CasMaCat Workbench

Thot can be used in combination with the CasMaCat Workbench which has been developed
in the project of the same name. The specific installation instructions can be obtained at the
project website".

2.3.5 CppUnit

CppUnit' is a C++ framework for unit testing. The thot _test tool internally uses CppUnit
to execute a growing set of unit tests.

CppUnit should be installed in a standard OS directory before executing configure. If
the apt tool is available in your operating system, CppUnit can be installed by executing the
following command:

$ sudo apt install libcppunit-dev

2.4 Checking Package Installation

Once the package has been installed, it is possible to perform basic checkings in an automatic
manner so as to detect portability errors. For this purpose, the following command can be
executed:

$ make installcheck

The tests performed by the previous command involve the execution of the main tasks
present in a typical SMT pipeline, including training and tuning of model parameters as well
as generating translations using the estimated models (see more on this in Section 3.1). The
command internally uses the toy corpus provided with the Thot package (see Section 2.1) to
carry out the checkings.

2.5 Add Thot to the System PATH

To end the installation process, it might be useful to add Thot to the system PATH. This
will allow us to easily execute commands provided in the package without the necessity of
providing the whole Thot installation path.

For this purpose, we can execute the following commands:

Mhttp://www.casmacat .eu/index.php?n=Workbench.Workbench
'https://freedesktop.org/wiki/Software/cppunit/

13

http://www.casmacat.eu/index.php?n=Workbench.Workbench
https://freedesktop.org/wiki/Software/cppunit/

Chapter 2. Installation

$ THOT_HOME_DIR=<absolute-installation-path>
$ export PATH=S$PATH:${THOT_HOME_DIR}/bin

These variable definitions can be added to the .bashrc user profile file, so as to define
them automatically whenever a new interactive shell session is started.

14

CHAPTER 3

USER GUIDE

This chapter provides usage information for the Thot toolkit. A toolkit overview is given in
Section 3.1. A brief explanation about how corpora used in translation tasks are partitioned
is provided in Section 3.2. The file naming conventions adopted to work with the toolkit are
explained in Section 3.3. Corpus preprocessing functionality is shown in Section 3.4. Model
training and tuning tools are presented in Section 3.5. Section 3.6 explains how to use the
previously trained and tuned models to generate translations or phrase alignments. The tools
useful to postprocessing the Thot’s output are discussed in Section 3.7. Section 3.8 mentions
some additional tools that are useful for translation tasks and Section 3.9 describes some
advanced features implemented by Thot. Section 3.10 explains how Thot’s configuration can
be easily changed by means of the master.ini file. Section 3.11 provides general sample
uses of Thot. Finally, Section 3.12 gives troubleshooting information about the toolkit usage.

3.1 Toolkit Overview

The basic usage of Thot involves training, tuning and search processes. Additionally, the
parallel corpora used for training purposes can be previously preprocessed and the transla-
tion output may require a postprocess stage. The training process consists in estimating the
parameters of the translation and language models. After that, a basic configuration file col-
lecting the data of the trained models is generated (the workflow implemented by the Thot
toolkit makes extensive use of configuration files to increase usability). Once these models
have been generated, they are combined by means of the so-called log-linear models. This
combination assigns different weights to the models so as to increase the translation quality.
The exact values of such weights are determined during the tuning process. After training
and tuning the models, an optional filtering step is carried out so as to keep the portion of
the phrase model that is strictly necessary to work with a specific test corpus. This filtering
process may be crucial to ensure the applicability of statistical machine translation in real
scenarios, due to the huge size of the phrase models that are obtained when processing large
training corpora. Finally, during the search process, the resulting model is applied to generate
translations in a fully-automatic or interactive way, or to generate alignments at phrase level.
Such processes can be summarized in the following list:

15

Chapter 3. User Guide

1. Corpus preprocessing

2. Language model training.

3. Translation model training.
Generate basic configuration file.
Parameter tuning.

Phrase model filtering (optional).

N o R

Search:

(a) Fully automatic translation.
(b) Interactive machine translation.

(c) Phrase alignment generation.

8. Postprocessing of translator’s output

Thot allows us to execute in parallel the above explained tasks using computer clusters or
multiprocessor systems. Parallel implementation is transparent to the user, who is requested
to specify the number of processors in which the tools will be executed. Thot currently
supports the use of PBS clusters (a cluster providing gsub and other related tools).

In the following sections we describe the different tools offered by the Thot toolkit im-
plementing the different steps of the translation pipeline described above.

3.2 Corpus Partition

SMT systems use parallel corpora to train and tune the model parameters. After the pa-
rameters have been estimated, the resulting models are used to obtain the target translations.
The completion of these tasks require the generation of a corpus partition composed of three
different sets:

» Training set: the training set is used to train the different statistical models involved
in the translation. It is typically composed by many thousands or even millions of sen-
tence pairs (greater training set sizes usually allow us to increase translation quality).

* Development set: the development set is used for parameter tuning (it is not used in
the initial training stage). This set is typically composed of a few thousand sentence
pairs (1000 or 2000 are usual in common translation tasks).

* Test set: the test set is used to compute automatic evaluation measures using the target
sentence as reference sentences. This set is often composed of a few thousand sentence
pairs in the same way as the development set.

In Thot it is assumed that, for a specific set, there will be two parallel files, one related to
the source language and another related to the target sentence.

16

3.3. File Naming Conventions

3.3 File Naming Conventions

To simplify the usage of some translation tools offered by Thot, it is useful to define a specific
naming convention for the files containing the partition of the parallel corpus. In particular,
the names will be composed by a prefix specific to the source or the target languages, and a
suffix identifying whether the file belongs to the training, development or test set.

To illustrate this file naming convention, we can look at the files that com-
pose the Spanish to English toy corpus included in the package (installed under the
${PREFIX}/share/thot/toy_corpus directory, see Section 2.1):

 {sp}|{en}.train: the files sp.train and en.train compose the training set of the
toy corpus, which is available in the Spanish and English languages.

* {sp}|/{en}.dev: sp.dev and en.dev correspond to the development set.

* {sp}|{en}.test: finally, sp.test and en.test correspond to the test set.

As it is explained in the next section, the initial (or raw) corpus files can be preprocessed
to improve translation results. When we carry out a specific preprocess step to a set of corpus
files, we extend the prefix initially used to identify them. For instance, to identify the rok-
enized version of the previous toy corpus files (see Section 3.4.1), we add the string _tok to
the prefix:

* {sp_tok}|{en_tok}.train
* {sp_tok}|{en_tok}.dev

* {sp_tok}|{en_tok}.test

After that, if the tokenized text is lowercased (see Section 3.4.2), the _1c string will be
added as follows:

o {sp-tokc}|{en_tok_Ic}.train
o {sp-tokc}|{en_tok Ic}.dev

o {sp-tokc}|{en_tok Ic}.test

Both the tokenized and lowercased versions of the toy corpus are included in the Thot
package. Alternatively, they can be generated from the raw files using the corpus preprocess-
ing tools described in the next section.

3.4 Corpus Preprocessing Tools
In common translation tasks, it is often interesting to preprocess the available parallel texts

to make the translation process easier. Typically, corpus preprocessing involve three steps,
namely, tokenization, lowercasing and corpus cleaning.

17

Chapter 3. User Guide

3.4.1 Tokenization

Before successfully aplying SMT, it is important to break the text into words, symbols or
other meaningful elements that we will refer to as tokens. For this purpose, tokenization tools
typically rely on a set of heuristics, such as discarding whitespace characters or splitting text
by words and punctuation marks.

Thot provides the thot_tokenize tool, which can be used to tokenize texts. The tool
receives the file to be tokenized using the -f parameter (or the standard input). This tool
internally uses the above mentioned NLTK library, so it should be available before installing
Thot (see Section 2.1).

Examples

The following list of commands obtain a tokenized version of the source files of the toy
corpus:

thot_tokenize -f ${PREFIX}/share/thot/toy_corpus/sp.train > sp_tok.train
thot_tokenize —-f ${PREFIX}/share/thot/toy_corpus/sp.dev > sp_tok.dev
thot_tokenize -f ${PREFIX}/share/thot/toy_corpus/sp.test > sp_tok.test

3.4.2 Lowercasing

After tokenizing the corpus, it can also be useful to lowercase it. This frees the translation
system from the task of finding an appropriate capitalization for the translated text. In ad-
dition to this, the translations models will be hopefully improved, since now we are using a
canonic form for each word, allowing us to better exploit the available training corpus.

To lowercase text, Thot provides the thot_lowercase tool. The tool receives the file to
be lowercased using the -f option (or the standard input). This tool is also based on the
NLTK library.

Examples

The following commands lowercase the tokenized source files of the toy corpus:

thot_lowercase —-f ${PREFIX}/share/thot/toy_corpus/sp_tok.train >sp_tok_lc.train
thot_lowercase —-f ${PREFIX}/share/thot/toy_corpus/sp_tok.dev > sp_tok_lc.dev
thot_lowercase —-f ${PREFIX}/share/thot/toy_corpus/sp_tok.test > sp_tok_lc.test

3.4.3 Corpus Cleaning

The parallel texts used to train and tune the translation system can be cleaned by remov-
ing extremely long sentence pairs, which increase the parameter estimation time, as well as

18

3.5. Training and Tuning Tools

sentence pairs with highly disparate lengths, which may correspond to corpus segmentation
errors. For this purpose, Thot incorporates the thot_clean_corpus_1n tool, whose main
options are listed below:

thot_clean_corpus_ln

-s (string) file with source sentences.

-t (string) file with target sentences.

-a {int) maximum sentence length allowed

-d (int) maximum number of standard deviations allowed in the difference in length
between the source and target sentences.

The thot_clean corpus_1n tool writes to the standard output the line numbers of all
the sentence pairs of the given corpus that does not violate the length constraints mentioned
above. On the other hand, it also print information about the line numbers of discarded
sentence pairs to the error output. This information can be used to extract the corresponding
source and target sentences using the thot_extract_sents_by_1ln tool.

Examples

The following commands clean the tokenized and lowercased training set of the toy corpus:

thot_clean_corpus_1ln -s ${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train \
-t ${PREFIX}/share/thot/toy_corpus/en_tok_lc.train \
> line_numbers
thot_extract_sents_by_1ln —-f ${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train \
-n line_numbers > sp_tok_lc_clean.train
thot_extract_sents_by_ln -f ${PREFIX}/share/thot/toy_corpus/en_tok_lc.train \
-n line_numbers > en_tok_lc_clean.train

3.5 Training and Tuning Tools

In this section, the functionality implemented in Thot for model training and tuning is de-
scribed.

3.5.1 Language Model Training

Thot uses n-gram models with Jelinek-Mercer smoothing (see for instance (Chen and Good-
man 1996)) to implement language models®.

Basic Tools

Thot provides the thot_lm train tool, which can be used to train language models. The
basic input parameters include:

State-of-the-art Kneser-Ney smoothing is currently being incorporated.

19

Chapter 3. User Guide

‘ thot_lm train

-pr (int) number of processors used to perform the estimation.

—-c (string) monolingual corpus used to estimate the model.

-o (string) directory for output files. When executing the command in PBS clusters, the
user should ensure that the provided path is accessible for all nodes involved in
the computation.

-n {int) order of the n-grams.

The command also generates a model descriptor in the output directory name 1m_desc
that will be useful to generate configuration files.

When executing the estimation process in computer clusters, it is important to ensure that
the computer nodes involved receive enough resources (memory, computation time, etc.).
For this purpose, the thot_1m train tool incorporates de -gs option . In addition to this,
-tdir and -sdir options allow to set the paths of the directory for temporary and shared
files, respectively, when the default ones do not have enough free space to carry out the
estimation.

For additional options and information, command help can be obtained by typing
thot_1lm train —--help.

Examples

To illustrate the tools related to language model generation, as well as for other examples
shown in this chapter, we will use the toy corpus included with the Thot toolkit. Assum-
ing that Thot was installed in ${PREFIX} directory, the toy corpus will be available in
${PREFIX}/share/thot/toy_corpus®.

The following command line trains a 3-gram language model for the English tokenized
and lowercased training set of the toy corpus, using the —unk option, storing the results in the
1m directory:

train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_Im_train —-c ${train_corpus} -o lm -n 3 —unk

3.5.2 Translation Model Training

Thot implements translation models by means of phrase-based models (Koehn et al. 2003).

Basic Tools

Thot incorporates the thot_tm train tool, useful to train phrase models. The basic input
parameters include:

bIf ——prefix option was not explicitly provided to conf i gure during installation, then $ {PREFIX}is
setto /usr/local.

20

3.5. Training and Tuning Tools

thot tm train

-pr (int) number of processors used to perform the estimation.

-s (string) file with source sentences.

-t (string) file with target sentences.

-o (string) directory for output files. When executing the tool in PBS clusters, the user
should ensure that the provided path is accessible for all nodes involved in the
computation.

The command also generates a model descriptor in the output directory name tm_desc
that can be used to generate configuration files.
thot_tm_train alsoincludes options to ensure that the training process receives enough
computational resources in the same way as was explained for language model training (see
Section 3.5.1). These options are -gs , -tdir and -sdir .
For additional options and information, command help can be obtained by typing
thot_tm_train --help.

Examples

Again, we will use the toy corpus included with the Thot toolkit to illustrate the transla-
tion model functionality. Assuming that Thot was installed in ${PREFIx} directory, the toy
corpus will be available in ${PREFIX}/share/thot/toy_corpus.

The following command line trains a phrase model for the tokenized and lowercased
Spanish training set of the toy corpus, storing the results in the tm directory:

src_train_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train
trg_train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -o tm

3.5.3 Basic Configuration File Generation

Thot uses configuration files to simplify the access to the toolkit functionality. These config-
uration files provides information about the parameters used by the Thot translation system,
including the location of the translation and language models, the set of log-linear model
weights, parameters relevant to the way in which the search process is carried out, etc.

Configuration files can be manually generated from the template files given in the path
${PREFIX}/share/thot/cfg_templates, where ${PREFIX} is the directory where Thot
was installed.

Basic Tools

Alternatively, configuration files can also be generated by means of the thot_gen_cfg _file

command. For this purpose, it is necessary to provide the descriptors of both the language
and translation models (the exact syntax can be obtained by executing the command without
parameters). The command output is written to the standard output and consists in a basic

21

Chapter 3. User Guide

configuration file allowing to work with the language and translation models given by the
provided model descriptors.

Examples

Assuming that we have already trained language and translation models located in the 1m and
tm directories, respectively, the following command line generates a basic Thot configuration
file and writes it to the file before_tuning.cfg:

thot_gen_cfg_file 1lm/lm_desc tm/tm_desc > before_tuning.cfg

3.5.4 Parameter Tuning

After training the language and translation models, it is necessary to execute a parameter
tuning stage. For this purpose, a development corpus separated from the training corpus
is required. Currently, this stage affects to the weights of the language model as well as
those of the log-linear model. Tuning of language model weights is necessary due to the use
of Jelinek-Mercer smoothing (as it was mentioned above, Kneser-Ney smoothing is being
implemented).

Thot incorporates the downhill-simplex algorithm (Nelder and Mead 1965) to tune the
language and log-linear model weights. Regarding the criterion used for weight adjustment,
language models weights are set so as to minimize the perplexity of the model, while the
criterion to adjust log-linear weights is to maximize translation quality according to some
specific measure (see Section 3.8.1 for additional details).

Basic Tools

The thot_smt_tune tool allows to perform parameter tuning. For this purpose, it is nec-
essary a Thot configuration file and a development corpus. Here is a list of the basic input
parameters:

‘ thot_smt_tune

-pr (int) number of processors used to perform the estimation.
) Thot configuration file.

-s (string) file with source sentences.
)
)

file with target sentences.

directory for output files. When executing the command in PBS clusters, the
user should ensure that the provided path is accessible for all nodes involved in
the computation.

thot_smt_tune returns a new configuration file where the language and log-linear model
weights are tuned. This file is stored under the output directory given by the -o option with
the name tuned_for_dev.cfgq.

22

3.5. Training and Tuning Tools

As in previously presented tools, thot_smt_tune may require specific resources that can
be specified by means of the —qs , -tdir and -sdir options.

For additional options and information, command help can be obtained by typing
thot_smt_tune —--help.

Examples

The following command line tunes the system given in the before_tuning. cfq file, for the
tokenized and lowercased development set of the Thot toy corpus, storing the results in the
smt_tune directory:

src_dev_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.dev

trg_dev_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.dev

thot_smt_tune —-c before_tuning.cfg -s ${src_dev_corpus} -t ${trg_dev_corpus} \
—o0 smt_tune

After the successful execution of thot_smt_tune , the configuration file corresponding
to the tuned system will be stored in smt_tune/tuned_for_dev.cfg.

3.5.5 Phrase Model Filtering

Phrase models are composed of millions of parameters when they are estimated from large
training corpora, making impossible to store them in main memory when using regular com-
puter hardware. One simple solution to this problem when the set of sentences to be translated
is know beforehand is to filter those phrase model parameters that are relevant to carry out
the translation process.

Basic Tools

The thot_prepare_sys_for_test tool allows to filter the parameters of a phrase model.
For this purpose, it is necessary a Thot configuration file and a file with the sentences to be
translated. Here is a list of the basic input parameters:

thot _prepare_sys_for_test

-c (string) Thot configuration file.

-t (string) file with test sentences.

-o (string) directory for output files. When executing the command in PBS clusters, the
user should ensure that the provided path is accessible for all nodes involved in
the computation.

The thot_prepare_sys_for_test tool may require specific resources that can be spec-
ified by means of the -gs, -tdir and -sdir options, in a similar way to other tools
described above.

For additional options and information, command help can be obtained by typing

thot_prepare_sys_for_ test —--help.

23

Chapter 3. User Guide

Examples

The following command line filters the phrase model given in the smt _tune/tuned_for_dev.cfg
file (obtained after the parameter tuning step), for the tokenized and lowercased test set of the
Thot toy corpus, storing the results in the filtered.-models directory:

src_test_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.test
thot_prepare_sys_for_test —-c smt_tune/tuned_for_dev.cfg \
-t ${src_test_corpus} -o filtered_models

3.6 Search Tools

After performing model training, tuning and filtering, we are prepared to generate transla-
tions, both in a fully-automatic or interactive way. In addition to this, the estimated models
can also be used to generate phrase level alignments. The following sections explain how to
access such functionalities.

3.6.1 Fully Automatic Translation

Thot incorporates tools to translate a set of sentences in a fully-automatic way. This task can
be carried out using both, command line and client-server tools.

Basic Tools

The thot_decoder tool allows to generate translations for a given test set. For this purpose,
a Thot configuration file and a file with the sentences to be translated should be provided.
Here is a list of the basic input parameters:

‘ thot_decoder

-pr (int) number of processors used to carry out the translation.
-c (string) Thot configuration file.

-t (string) file with test sentences.

-o (string) output file.

For additional options and information, command help can be obtained by typing
thot_decoder —--help .

Client-Server Tools

The translation functionality mentioned above is also included in the client-server architecture
provided by Thot. This includes two basic tools: thot_server and thot_client .

The thot_server tool implements a fully-fledged SMT system. The most relevant input
parameter that has to provided, the -c parameter, is the name of the configuration file.

24

3.6. Search Tools

On the other hand, thot_client can be used to request translations to the server.
thot_client requires the IP address where the server is being executed using the -i op-
tion, as well as the sentence to be translated, that is provided by means of the -t option.

After finishing work with the server, we should not forget to end it. This can be done
simply by killing the corresponding process or by using the -e option of thot_client .

Boththe thot_client and thot_server tools may receive additional input parameters,
use the --help option for more information.

Examples

The following command wuses the system configuration provided in the
filteredmodels/test_specific.cfg file to translate the tokenized and lowercased
test set of the Thot toy corpus, storing the results in the output file:

src_test_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.test
thot_decoder -c filtered_models/test_specific.cfg -t ${src_test_corpus} \
-0 output

Alternatively, the following example shows how to obtain the translation of a test sentence
of the toy corpus using the client-server architecture:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server
thot_client —-i 127.0.0.1 -t 'voy a marcharme hoy por la tarde .'

After translating the previous sentence, and assuming there are no more to be translated,
we can end the server using the following command:

thot_client -i 127.0.0.1 -e

IMPORTANT NOTES:

* It should be noted that in this example, we do not provide a filtered model but the
general one (smt_tune/tuned-for_dev.cfg). This differs from the example given
for the thot_decoder tool. In spite of the fact that filtered models can be loaded
when using thot_server , the client-server implementation is more suited to work in
a scenario where the sentences to be translated are not known beforehand and thus the
models cannot be filtered.

* When using the client, it is strongly advised to type single instead double quotes to
provide input strings. The reason why is that double quotes enable shell expansion
(e.g. variable substitution), resulting in potentially undesired transformations in the
strings. To avoid this, single quotes can be used.

25

Chapter 3. User Guide

3.6.2 Interactive Machine Translation

Thot implements interactive machine translation functionality, which allows to generate suf-
fixes that complete the prefixes validated by the user (see Section 1.1.2).

Client-Server Tools

The interactive machine translation functionality implemented in Thot can be accessed by
means of the thot_server and thot_client tools. This functionality includes obtaining
the initial translation of a source sentence and obtaining the suffix that best completes a prefix
given by the user.

Before using the interactive machine translation functionality, it is necessary to initialize
the server. For this purpose, the thot_server tool requires the name of configuration file
that is supplied by means of the -c parameter.

On the other hand, requests to the server can be sent by means of thot_client . As basic
parameter, thot_client requires the IP address where the server is being executed using
the -i option. Thot maintains state information through the different interactions between
the user and the system. Some of the information that is mantained is specific to the user
and hence it is important to use different user identifiers for different interactive translation
sessions. The user identifier can be provided by means of the -uid option. To interactively
translate a sentence, the -sc option is used to start the translation process. After that, new
strings can be added to the previously existing prefix by means of the -ap option. It is
important to point out that the server works at character level. Finally, the -rp option can
be used to reset the prefix.

After finishing work with the server, it should be terminated. This can be done simply by
killing the corresponding process or by using the -e option of thot_client .

To get additional information on the usage of thot_client and thot_server , use the

--help option.

Examples

The following example shows how to access the basic interactive machine translation func-
tionality provided by Thot using the client-server architecture:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server

thot_client —-i 127.0.0.1 -uid 0 -sc 'me marcho hoy por la tarde .'
thot_client -i 127.0.0.1 -uid 0 -ap 'I am '

thot_client -i 127.0.0.1 -uid 0 -ap 'le'

NOTE: at this point, the user prefix provided to the system is 'I am le'
thot_client -i 127.0.0.1 -uid 0 -rp # reset prefix

After finishing the previous interactive machine translation session and provided that
there are no additional sentences to be translated, the server can be terminated by typing:

26

3.7. Output Postprocessing Tools

thot_client -1 127.0.0.1 -e

3.6.3 Phrase Alignment Generation
TO-BE-DONE.

3.7 Output Postprocessing Tools

Once the output of the system have been obtained, it may be necessary to recase and/or
detokenize the text depending on whether the initial corpus was preprocessed or not (see
Section 3.4). Below we describe some tools that are helpful for this purpose.

3.7.1 Recasing

If the initial corpus was lowercased, it will be necessary to recase the output of the system.
The Thot toolkit incorporates its own recasing tool: thot_recase . thot_recase Works by
estimating a recasing model from a raw text file. Once the model is estimated, it is applied to
obtain the text in real case. The main options of the tool are the following:

-f (string) | file with text to be recased.
-r (string) file with raw text to train the recaser models.

One possible option to supply the raw text file would be simply passing the target training
set. However, a better option could be to also include the target development set and the
source test set as well (the model can take advantage of information in the source language for
specific words). If the user adheres to the file naming conventions described in Section 3.3,
then it is very easy to generate this raw text file by means of the thot_gen_rtfile tool,
which requires the prefix of the source and target corpus files:

thot_gen_rtfile

-s (string) prefix of files with source sentences.
-t (string) prefix of files with target sentences.
Examples

The following commands allows us to recase the output given by the decoder in the example
shown in Section 3.6.1 (since the corpus was tokenized during the corpus preprocessing stage,
we should provide the prefix corresponding to the tokenized files):

Chapter 3. User Guide

thot_gen_rtfile -s ${PREFIX}/share/thot/toy_corpus/sp_tok \
-t ${PREFIX}/share/thot/toy_corpus/en_tok \
> rtfile

thot_recase —-f output -r rtfile > output_rec

3.7.2 Detokenization

The toolkit also incorporates a tool to detokenize texts: thot_detokenize . The tool works
in a very similar manner to the thot_recase tool explained above. Specifically, it needs to
train a detokenization model from raw text:

‘ thot_detokenize

-f (string) file with text to be detokenized.
-r (string) file with raw text to train the detokenizer models.

Again, the raw text file required by thot_detokenize can be generated by means of the
thot_gen_rtfile tool, as it was explained above for the recaser.

Examples

The following commands allows us to detokenize the recased text obtained in the example of
Section 3.6.1:

thot_gen_rtfile -s ${PREFIX}/share/thot/toy_corpus/sp \
-t ${PREFIX}/share/thot/toy_corpus/en \
> rtfile
thot_detokenize —-f output_rec -r rtfile > output_rec_detok

3.8 Additional Tools

In the following sections we describe some tools relevant to the translation process that were
not listed above.

3.8.1 Output Evaluation

After translating a test set, the translation quality can be evaluated using automatic measures
provided that there exist reference translations for each source sentence. Thot implements
some tools for this purpose:

* thot_calc bleu: obtains the BLEU (bilingual evaluation understudy) measure (Pap-
ineni et al. 2001).

28

3.9. Advanced Functionality

e thot_calc_wer: calculates the WER (word error rate) measure (the number of substi-
tutions, insertions and deletions that are required to convert the system translation into
the reference sentence).

3.8.2 Automatization of Translation Experiments

The thot_auto_smt tool allows users to conduct a whole SMT experiment in an automatic
manner, including corpus preprocessing, parameter training and tuning, model filtering, gen-
eration of translations, output postprocessing and output evaluation. thot_auto_smt re-
quires that the corpus files follow the naming conventions described in Section 3.3. Here is a
list of the main options accepted by the tool:

thot_auto_smt

-pr (int) number of processors used to carry out the translation.

-s (string) prefix of files with source sentences.

-t (string) prefix of files with target sentences.

-o (string) directory for output files. When executing the command in PBS clusters, the
user should ensure that the provided path is accessible for all nodes involved in
the computation.

——skip-clean| skip corpus cleaning stage.

-—tok execute corpus tokenizing stage.
--lower execute lowercasing stage.
-—no-trans do not generate translations.

After completing its execution, the thot_auto_smt tool generates the following direc-
tories under the output directory provided as input parameter:

* preproc_data: contains the preprocessed corpus files (if preprocessing was requested).
e 1m: contains the language model files.

* tm: contains the translation model files.

* smt_tune: contains all the data related to the tuned system.

* filtered models: contains the data related to the system prepared for translation of
the test set.

* output: contains the output of the system. Additionally, the tool also computes eval-
uation measures and postprocess the output if the corpus files were preprocessed.

3.9 Advanced Functionality

This section explains how to access advanced features included in the Thot toolkit.

29

Chapter 3. User Guide

3.9.1 Online Learning

Thot incorporates techniques that allow to incrementally update the parameters associated
to the features of a state-of-the-art log-linear model (Ortiz-Martinez et al. 2010). For this
purpose, a set of incrementally updateable sufficient statistics is defined for each feature,
allowing us to process individual training samples in constant time complexity.

Client-Server Tools

The online learning functionality implemented in Thot can be accessed by means of the of
the thot_server and thot_client tools. This functionality includes processing a single
training pair and printing the models.

Prior to use the online learning functionality, the server should be initialized. For this
purpose, the thot_server tool requires the name of configuration file that is supplied by
means of the -c parameter.

On the other hand, requests to the server can be sent by means of thot_client . As basic
parameter, thot_client requires the IP address where the server is being executed using
the -i option. In addition to this, the -tr option can be used to specify the training pair
to be processed and the —pr option allows to print the updated models to files. Printing the
models causes the previous ones to be overwritten.

To get more information on the usage of thot_client and thot_server , use the

--help option.

Examples

The following example shows how to process a new training pair and print the models using
the client-server architecture:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server
thot_client —-i 127.0.0.1 -tr 'esto es una prueba' 'this is a test'
thot_client -i 127.0.0.1 -pr # print models (previous ones are overwritten)

3.9.2 Online Learning From Scratch

One interesting way to perform online learning arises when we start the learning process
from scratch, i.e. with empty models. Thot incorporates one utility that automates this kind
of initalization: thot_sys_from_scratch . This tool has only one mandatory option:

‘ thot_sys_from_scratch
-o (string) output directory.

thot_sys_from_scratch tool creates a directory containing empty language and phrase
models, as well as a configuration file, sys_from_scratch.cfg, whose purpose is to be
processed by thot_server . After initializing thot_server with the online learning from
scratch configuration file, its models can be extended using thot_client .

30

3.9. Advanced Functionality

Examples

The following example shows how to create an online learning system with empty models in
the o1_scratch directory:

thot_sys_from_scratch -o ol_scratch

3.9.3 Accessing Language Model Parameters From Disk

Language models estimated from large corpora may have millions of parameters that should
be loaded in memory so as to be accessed during the decoding process. As a consequence,
the loading process is typically slow and requires a huge amount of main memory.
To avoid this problem, it is possible to handle language model parameters directly from
disk. This reduces the main memory requirements and loading time costs to virtually zero.
Currently, Thot provides on-disk language model functionality by means of the LevelDB
or KenLLM libraries.

On-Disk Language Models Using LevelDB

Enabling on-disk LevelDB language models only requires the use of the -1db flag when exe-
cuting the thot_1m_train utility. It is important to stress out that the -1db option will only
be available if Thot has been properly installed with LevelDB support (see Section 2.3.1).

As an example, the following command line trains a LevelDB 3-gram language model
for the English tokenized and lowercased training set of the toy corpus, storing the results in
the 1m directory:

train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_lm_train -c ${train_corpus} -o lm -n 3 -1db

One important property of LevelDB language models is that they can be dynamically
modified very efficiently. This makes this kind of models particularly appropriate for online
learning tasks.

On-Disk Language Models Using KenLM

In a similar way to LevelDB language models, enabling on-disk KenLM language models
can be achieved by means of a specific flag when executing thot_1m_train . In particular,
the -kenlm flag should be used. The flag will only be available if Thot has been properly
installed with KenLLM support (see Section 2.3.2).

To train a KenLM 3-gram language model for the English tokenized and lowercased
training set of the toy corpus, storing the results in the 1m directory, we should execute the
following commands:

31

Chapter 3. User Guide

train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_Im_train -c ${train_corpus} -o lm -n 3 —-kenlm

It is important to remark here that KenLLM language models are static in contrast to the
LevelDB implementation described above. This means that they cannot be used for online
learning.

3.9.4 Accessing Phrase Model Parameters From Disk

When estimated from large corpora, phrase models present the same problems that were
explained above for language models, namely, increased main memory requirements and
loading time costs.

One way to tackle this problem is, again, relying on disk to access model parameters. To
offer this functionality, Thot uses the LevelDB or the Berkeley DB libraries.

On-Disk Phrase Models Using LevelDB library

LevelDB library can be used to generate phrase models that are accessed from disk. For this
purpose, the -1db flag provided by the thot_tm_train tool should be applied. The flag
will only be available if Thot was properly configured to work with the LevelDB library (see
Section 2.3.1).

The following command line trains a LevelDB phrase model for the tokenized and low-
ercased Spanish training set of the toy corpus, storing the results in the tm directory:

src_train_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train
trg_train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -o tm -1ldb

Similarly to LevelDB language models, Using LevelDB to implement translation models
allows to modify model parameters very efficiently in real time, which is crucial to apply
online learning.

On-Disk Phrase Models Using Berkeley DB library

Another alternative to efficiently access phrase model parameters from disk is the Berkeley
DB library. To generate phrase models based on this library, we can use the -bdb flag pro-
vided by the thot_tm_train tool. The flag can only be used if Thot was properly configured
to work with the Berkeley DB library (see Section 2.3.3).

The following command line trains a Berkeley DB phrase model for the tokenized and
lowercased Spanish training set of the toy corpus, storing the results in the tm directory:

32

3.9. Advanced Functionality

src_train_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train
trg_train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
thot_tm_train -s ${src_train corpus} -t ${trg_train_corpus} -o tm -bdb

Phrase models based on the Berkeley DB library can be modified dynamically. However,
model extension operations are time consuming, since their complexity depends on the num-
ber of parameters stored in the model. This contrasts with the constant complexity offered by
the LevelDB implementation described above or the native translation model of Thot.

3.9.5 Using Multiple Language Models

In order to maximize translation quality, it can be interesting to maintain separated language
models for data sets belonging to different domains. Once the models are estimated, the
subsequent tuning process can be used to assign specific weights to each model according to
their relative importance in the given translation task.

After training a language model using thot_lm_train , itis possible to add a new one by
using the -a option provided by the same tool. For instance, assuming that the previously
estimated language model was stored in the 1m directory, the following command line adds a
new trigram language model estimated from the training text pointed by the train_corpus
shell variable:

thot_1lm _train -c ${train_corpus} -a 1lm -n 3

The previous process can be repeated multiple times, using any of the options provided
by thot_1lm_train .

3.9.6 Using Multiple Phrase Models

Maintaining multiple phrase models can be interesting to maximize translation quality in the
same way as was explained above for multiple language models.

The procedure to incorporate new phrase models after having trained the first one is
also very similar to that followed for language models. In particular, the -a option for
the thot_tm train tool should be used. For example, the following command can be
used to add a new phrase model to a previously estimated one stored in the tm directory
(src_train_corpus and trg_train_corpus shell variables point to the source and target
training text files, respectively).

thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -a tm

33

Chapter 3. User Guide

Again, the previous operation can be repeated multiple times using the different options
provided by thot_tm_train .

3.9.7 Forcing Translations for Source Phrases

In certain translation scenarios, it may be important to force the translation of specific seg-
ments of the source sentence. For instance, forced translations may come from contextual
terminologies, allowing system output to conform to the specific rules of the translation task.

Thot is able to fix the translations for source segments by incorporating specific XML
tags in the sentences to be translated. Once these tags have been incorporated, the translation
tools provided by Thot are used without modification.

The following input sentence in Spanish: “buenos dias”, incorporates XML tags indicat-
ing that the Spanish word buenos should be translated by the English word good.

<phr_pair_annot><src.segm>buenos</src.segm> <trg.segm>good</trg-segm></phr_pair.annot> dias

Currently, this option is only available for the fully-automatic translation tools provided
by Thot.

3.10 Changing Configuration Through master. ini File

Thot’s code is structured in modules that are loaded dynamically. This allows to easily extend
or modify the behavior of the toolkit. The modules loaded at a given instant are given as
individual entries contained in a special file called master.ini. After installation, this file
is located in the ${PREFIX}/share/thot/ini_files directory.

Users can modify master.ini to enable certain functionality. In spite of the fact that
master.ini can be modified directly, Thot provides a specific tool to manipulate this file:
thot_handle_ini_files . We list the main options of the tool in the following table.

| thot_handle_ini _files

-s show content of master.ini.
-w (string) overwrite current master . ini with the file provided as argument.
-r revert master.ini to its original content after executing make install .

Thot currently provides a brief list of predefined ini files that will be extended in the fu-
ture. After toolkit installation, such files are stored in the ${PREFIX}/share/thot/ini_files
directory:

* standard.ini: this ini file contains the standard or default configuration of the
toolkit. master.ini file is initialized with this file every time make install is exe-
cuted.

* ibm2.ini: this file replaces HMM-based alignment models by IBM 2 alignment mod-
els, which are used to smooth phrase model probabilities and also for phrase model
estimation. IBM 2 alignment models substantially accelerate phrase model training

34

3.11. General Sample Uses

with respect to HMM-based alignment models. If configure is executed with the
-—enable-ibm2-alig option, then ibm2.in1i is used to initialize master.ini each
time make install is executed.

e wer.ini: Thot uses the BLEU measure as the default translation quality measure.
Such measure is used for instance to guide the tuning process. Thot offers the possibil-
ity to replace the BLEU measure by other measures by making the appropriate changes
in the master.ini file. The wer.ini file replaces BLEU by the WER measure.

The details about how entries of master.ini should be defined and their relationship
with the rest of the code and tools offered by Thot are provided in the code guide presented
in Chapter 4.

3.11 General Sample Uses

In this section we will show some general sample uses illustrating the functionality of the
Thot toolkit.

3.11.1 Training, Tuning and Translating
Example 1: processing the toy corpus

This example shows the sequence of commands required to train, tune and translate using the
tokenized and lowercased version of the toy corpus included with Thot.

define variables (optional)
src_train_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train
trg_train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
src_dev_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.dev
trg_dev_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.dev
src_test_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.test
trg_test_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.test

train system
thot_1lm_train -c ${trg_train corpus} -o lm -n 3 -unk
thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -o tm

generate cfg file
thot_gen_cfg_file 1lm/lm_desc tm/tm_desc > before_tuning.cfg

tune system
thot_smt_tune -c before_tuning.cfg -s ${src_dev_corpus} -t ${trg_dev_corpus} \
-0 smt_tune

filter phrase model

thot_prepare_sys_for_test -c smt_tune/tuned_for_dev.cfg -t ${src_test_corpus} \
-0 filtered_models

35

Chapter 3. User Guide

translate test corpus
thot_decoder -c filtered_models/test_specific.cfg -t ${src_test_corpus} \
-0 output

evaluate translation quality
thot_calc_bleu -r ${trg_test_corpus} -t output

3.11.2 Online Learning
Example 1: adding a training pair to the toy corpus

The following example shows the commands that have to be executed to add a new training
pair to the toy corpus. For this purpose, models for such corpus are first trained, tuned
and filtered. After that, the Thot server is started and the client is used to incorporate the
new training sample. Finally, the client is used again to print the resulting models to files,
overwriting the previous ones.

define variables (optional)
src_train_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.train
trg_train_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.train
src_dev_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.dev
trg_dev_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.dev
src_test_corpus=${PREFIX}/share/thot/toy_corpus/sp_tok_lc.test
trg_test_corpus=${PREFIX}/share/thot/toy_corpus/en_tok_lc.test

train system
thot_1m_train -c ${trg_train corpus} -o lm -n 3 -unk
thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -o tm

generate cfg file
thot_gen_cfg_file 1lm/lm_desc tm/tm_desc > before_tuning.cfg

tune system
thot_smt_tune -c before_tuning.cfg -s ${src_dev_corpus} -t ${trg_dev_corpus} \
-0 smt_tune

filter phrase model
thot_prepare_sys_for_test -c smt_tune/tuned_for_dev.cfg -t ${src_test_corpus} \

-0 filtered_models

start Thot server
thot_server -c smt_tune/tuned_for_dev.cfg &

add new training pair
thot_client -i 127.0.0.1 -tr 'esto es una prueba' 'this is a test'

print models (warning: previously generated models are overwritten)
thot_client -i 127.0.0.1 -pr

36

3.12. Troubleshooting

finish server
thot_client -i 127.0.0.1 -e

3.12 Troubleshooting

This section provides troubleshooting information about possible problems that arise during
the toolkit usage. The current list of identified problems is the following:

¢ The thot tm train tool is too slow: Thot uses HMM-based alignment models to
obtain the word alignment matrices required for phrase model estimation. The current
implementation of this kind of models is slow and may constitute a bottleneck (the
code will be optimized in future versions of Thot). To alleviate this problem, toolkit
users may enable one of the following workarounds:

a) Use the -pr option to execute thot_tm_train in multiple processors.

b) Replace HMM-based alignment models by IBM 2 alignment models by means of
the —-enable-ibm2-alig option of the configure script (see Section 2.2 for
more details). IBM 2 alignment models can be estimated and subsequentely used
to generate word alignment matrices very efficiently without causing significant
degradations in the translation quality. The use of this solution requires building
again the package. In addition to this, previously estimated HMM-based align-
ment models (if any) using the toolkit will not be valid for the alternative build of
the package and the user would need to re-train them.

37

Chapter 3. User Guide

38

CHAPTER 4

CODE GUIDE

This chapter provides an overview of Thot’s code, which is mainly written in C++ and shell
scripting. Section 4.1 offers a brief explanation about how the toolkit is configured before
installation. A description of the main base classes used throughout the code is presented in
Section 4.2. Section 4.3 analyzes the role that master.ini file plays in Thot’s architecture.
Section 4.4 gives a detailed explanation of model descriptor files, which constitute a key
aspect to guarantee toolkit modularity and extensibility. Section 4.5 presents an overview of
the main binary programs provided by the package. Next, a brief look to one class with pivotal
importance when implementing the translation server offered by Thot is given in Section 4.6.
Finally, Section 4.7 presents the unit testing functionality implemented in the package.

4.1 Brief Introduction to Autotools

The Thot package has adopted the so-called GNU Build System to handle its compilation,
installation and checking processes. The GNU Build System, in its simplest scenario is what
allow users to build packages by executing ./configure && make s& make install .

In order to simplify the implementation of the GNU Build System for a particular pack-
age, it is possible to use the Autotools®. Autotools provide a portable, complete and self-
contained GNU Build System.

When Autotools are used, implementing Thot’s build system needs the definition of the
configure.ac file as well a set of Makefile.am files for the different subdirectories of
the package. The whole building process for Thot requires the following command line:

./reconf && ./configure && make && make install .

The reconf shell script is a tool specifically created for Thot that executes some check-
ings and internally calls the autoreconf command provided by Autotools. As a result, the
configure script is generated from the configure.ac file. Additionally, autoreconf

also generates Makefile. in files from the corresponding Makefile. am files.

http://www.gnu.org/software/automake/manual /html_node/
Autotools—-Introduction.html

39

http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

Chapter 4. Code Guide

Once the Makefile.in files and the configure script have been generated, the latter
is executed so as to obtain the final Makefile files that are used to build the package.

The configure scriptis not only a way to create a portable set of Makefile’s, but also
offers a mechanism to handle building options for a given package. Thot makes extensive use
of this feature, as it is shown for instance in Section 2.2.

Here we have provided a very brief introduction to the use of Autotools, however, the
whole picture is much more complex. Interested readers are encouraged to consult detailed
sources of documentation® to better understand how Thot’s building system works.

4.2 Main Base Classes Used in Thot

Thot’s C++ code makes an extensive use of base classes providing well defined interfaces.
The main purpose of this is to take advantage of subtype polymorphism to allow for alterna-
tive implementations of the different software components involved in the translation process,
making the code substantially easier to extend.

4.2.1 Base Classes for Statistical Machine Translation

In this section we list those main base classes that are related to statistical machine translation
tasks:

* BaseWordPenaltyModel: this class defines the interface that word penalty models
should provide. This kind of models are used control the length of the output sentences
generated by the translation system.

* BaseNgramLM: defines the basic interface that should be implemented by n-gram lan-
guage model classes.

* BaseSwAligModel: this base class determines the interface that single word align-
ment models should follow. Single word alignment models are used in Thot for prob-
ability distribution smoothing during the translation process and also during phrase
model training.

* BasePhraseModel: this class provides the interface required by classes implementing
phrase models.

* BasePbTransModelFeature: defines the interface that log-linear model features
should follow.

* BaseSmtModel: provides the basis to implement statistical machine translation mod-
els that are used to score translation hypotheses generated during the decoding process.

* BaseStackDecoder: defines the interface requirements of classes implementing stack
decoding algorithms. Stack decoding algorithms are used to find the translation of
highest probability for a given source sentence®.

A complete tutorial is available in ht tps://www.lrde.epita.fr/-adl/dl/autotools.pdf
“For more information see http://daormar.github.io/thot/docsupport/thot_seminar.pdf

40

https://www.lrde.epita.fr/~adl/dl/autotools.pdf
http://daormar.github.io/thot/docsupport/thot_seminar.pdf

4.3. The master.ini File

* BaseLogLinWeightUpdater: it is used as base class for implementing log-linear
weight updating components.

* BaseScorer: defines the interface for classes used to assign translation quality scores
to the translations generated by Thot.

* BaseTranslationConstraints: defines an interface for classes specifying con-
straints over the translation system output. One example of these constraints is forcing
the translation of certain segments of the source sentences, as it was explained in Sec-
tion 3.9.7.

4.2.2 Base Classes Specific for Interactive Machine Translation

Besides previously listed base classes for statistical machine translation, there are also some
that are specific for interactive machine translation:

* BaseErrorCorrectionModel: provides the interface for classes implementing
stochastic error correction models.

* BaseEcModelForNbUcat: this class provides the interface for a specific variety of
error correction models used in interactive machine translation systems.

* BaseWgProcessorForAnlp: this class is the basis to implement a component useful
in interactive machine translation. In particular, a word graph processor. A word graph
is a compact way to store a very long set of possible translations for a given source
sentence. Each translation is stored as a whole path in the word graph starting from the
empty hypothesis and ending when all source words have been translated.

* BaseAssistedTrans: this class defines the interface to implement assisted transla-
tion systems useful to perform interactive machine translation.

4.3 Themaster.ini File

As it was already explained in Section 3.10, Thot uses a file called master.ini defining
which software modules are dynamically loaded when certain programs are executed. In this
context, a module is a UNIX shared library (files with so extension), providing a specific
implementation of a Thot’s base class. Currently, the base classes covered in master.ini
include the list given in Section 4.2 with the exception of BasePbTransModelFeature and
BaseSmtModel.

Using the master.ini file allows to easily modify the behavior of the toolkit by only
editing a text file. In addition to this, new modules can be created and used without the
necessity of recompiling the Thot’s code (only implementing a class derived from one of
the base classes mentioned above is required). Appendix A provides a list of the software
modules already implemented in Thot.

master.ini file is a plain text file composed of a set of entries, one per line. Below we
show an example of one of these entries:

41

Chapter 4. Code Guide

BaseScorer ; /home/dortiz/smt/software/thot_refactor/lib/mirableu_factory.so ;

Each entry is composed by three fields separated by semicolons. The first field is the name
of the base class that is being implemented. The second field specifies the shared library that
should be loaded. Finally, the third field contains input parameters that are passed to the
constructor of the loaded class when creating class instances. This last field can be left blank.

4.4 Model Descriptor Files

As it was explained in Section 3.5, training tools for language and translation models generate
model descriptor files (1m_desc and tm_desc, respectively). Such descriptors are composed
of one or more entries, each one describing the basic information of a specific model.

A model descriptor entry, no matter if it is a language or a translation model descriptor,
is a line with three fields separated by blanks (symbol # can be used to introduce comments).
The first field specifies the shared library implementing the model. Such shared library will
be loaded dynamically during model initialization. The second field is the relative path to the
model files (more specifically, the prefix of the files is provided). Finally, the third field is a
label associated to the model.

The following is an example of a language model descriptor entry:

/home/dortiz/smt/software/thot/lib/incr_-jel mer.ngram-lm_factory.so main/trg.lm main

Model descriptor files play a very important role in toolkit extensibility, since they allow
to easily switch between different model implementations at running time.

4.5 Main Binary Programs Provided by Thot

Thot’s functionality is built around a set of programs written in C++ that can be used to ex-
ecute basic statistical machine translation services, such as training a model or translating
sentences. Typically, those programs are later used within shell scripts to provide high level
services. For instance, basic training programs mentioned above are not prepared to be exe-
cuted in multiple processors or to deal with very large training corpora. Instead, they can be
internally used by a shell script implementing MapReduce techniques, enabling parallelism
and processing corpora of an arbitrary size. Another important purpose of high level services
is to automate tedious processes, such as executing the whole training and translation pipeline
with one command, including pre/post-processing steps.
The following list enumerates the main C++ programs implemented in Thot:

* thot_gen_phr model: this program generates a phrase model given alignment in-
formation coming from single word alignment models. The estimation process that is
executed is standard for phrase models, so no class given inmaster. ini file is loaded.

42

4.6. The ThotDecoder Class

* thot_gen_sw.model: this program estimates the parameters of single word alignment
models given a parallel training corpus. The above mentioned alignment information
that is required to estimate phrase models is obtained as a by-product of single word
model training using this tool. thot_gen_sw.model reads the master.ini file and
loads the module related to BaseSwAligModel class.

* thot_11 weight_upd nblist: this tool is used to tune log-linear model weights
given a list with the n-best translations for a development set.

* thot_1lm perp: this tool allows to calculate language model perplexity. Perplexity is a
measure of the quality of a given language model. This tool is also valuable to debug
newly implemented language models without the necessity of executing translation
related tools, which use additional components and are much more complex. This tool
reads master.ini and loads the module corresponding to class BaseNgramLM.

* thot_query pm: this simple program allows to make queries to modules implementing
phrase models. The main purpose of this is module debugging. This program loads the
module corresponding to BasePhraseModel class in master.ini.

* thot ms_dec: implements a fully automatic translation tool. This programs reads
master.ini and loads the modules related to all of the statistical machine translation
base classes listed in Section 4.2.1.

* thot_ms_alig: this program is used to generate phrase level alignments between sen-
tence pairs. It loads from master.ini the same modules read by thot_ms_dec.

* thot_server: this tool implements the Thot server. It offers an important part of
the functionality provided by the package, including fully-automatic translation, inter-
active machine translation or online training. thot_server loads all of the modules
given in master.ini.

* thot_client: it implements the Thot client used to communicate with thot_server.
thot_client does not need to load any module given in master.ini.

* thot_scorer: this tool is used to evaluate the translation quality measure of the sys-
tem output given the corresponding reference translations. The specific translation
quality measure computed by this tool is the one provided by the module for class
BaseScorer inmaster. ini file.

4.6 The ThotDecoder Class

In the previous section, it was mentioned that the thot_server tool offers an important part
of Thot’s functionality, ranging from online model training to fully automatic or interactive
machine translation. The ThotDecoder class is particularly interesting to study the C++
code implemented by the toolkit, since thot_server is completely built upon such class.

43

Chapter 4. Code Guide

The ThotDecoder class is designed to provide translation services to a set of users, tak-
ing the responsibility to handle all of the information related to them. This involves the defi-
nition of a memory ownership model as well as a mechanism to manage concurrent accesses
to the different services by multiple users.

The functions provided in the interface of the ThotDecoder class can be classified in the
following groups:

* Initialization: memory ownership model is initialized from class constructor. Addi-
tionally, there is a function to initialize statistical machine translation data from a cfg
file in the same way as it is done for high level programs, such as the above mentioned
thot_server.

* User related: includes functions to create all the necessary data for a new user access-
ing the class services and also to release such data.

¢ Training: includes functions for online training of language and translation models
and also to tune the log-linear model weights.

* Automatic translation: in this group we can find a function to translate a source sen-
tence and another one to generate a phrase level alignment for a sentence pair.

* Interactive translation: the main functions in this group includes one to start the inter-
active machine translation process and another one to add a string to current translation
prefix (see Section 1.1.2 for more details).

4.7 Unit Testing

Thot incorporates a growing set of unit tests using the functionality provided by the CppUnit
package. To be able to execute the unit tests, it is necessary to install CppUnit before execut-
ing the configure script with the ——enable-testing option (see Sections 2.2 and 2.3.5
for more information).

If unit tests were enabled, once the package is installed it is possible to execute them
by means of the thot_test command. Unit tests for different classes are defined in the
src/testing directory generated after cloning the Thot repository.

44

CHAPTER 5

BACKGROUND

TO-BE-DONE

45

BIBLIOGRAPHY

Barrachina, S. et al. (2009). “Statistical Approaches to Computer-Assisted Translation”. In:
Computational Linguistics 35.1, pp. 3-28.

Bender, O., S. Hasan, D. Vilar, R. Zens, and H. Ney (2005). “Comparison of Generation
Strategies for Interactive Machine Translation”. In: Conference of the European Associa-
tion for Machine Translation. Budapest, Hungary, pp. 33—40.

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer (1993). “The Mathematics
of Statistical Machine Translation: Parameter Estimation”. In: Computational Linguistics
19.2, pp. 263-311.

Chen, S. F. and J. Goodman (1996). “An Empirical Study of Smoothing Techniques for Lan-
guage Modeling”. In: Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics. Ed. by Arivind Joshi and Martha Palmer. San Francisco: Mor-
gan Kaufmann Publishers, pp. 310-318.

Garcia, 1. (2011). “Translating by post-editing: is it the way forward?” In: Machine Transla-
tion 25.3, pp. 217-237. 1SSN: 0922-6567.

Koehn, P., F. J. Och, and D. Marcu (2003). “Statistical Phrase-Based Translation”. In: Pro-
ceedings of the Human Language Technology and North American Association for Com-
putational Linguistics Conference. Edmonton, Canada, pp. 48-54.

Nelder, J. A. and R. Mead (1965). “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4, pp. 308-313. DOI: 10.1093/comjnl/7.4.308.

Ney, H. (1995). “On the Probabilistic-Interpretation of Neural-Network Classifiers and Dis-
criminative Training Criteria”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 17.2, pp. 107-119.

Och, Franz Josef (2003). “Minimum error rate training in statistical machine translation”.
In: Proceedings of the 41th Annual Conference of the Associations for Computational
Linguistics. Sapporo, Japan, pp. 160-167.

Ortiz, D., I. Garcia-Varea, and F. Casacuberta (2005). “Thot: a Toolkit To Train Phrase-based
Statistical Translation Models”. In: Proceedings of the Machine Translation Summit X.
Phuket, Thailand, pp. 141-148.

Ortiz-Martinez, D., I. Garcia-Varea, and F. Casacuberta (2010). “Online Learning for Interac-
tive Statistical Machine Translation”. In: Proceedings of the North American Chapter of
the Association for Computational Linguistics - Human Language Technologies (NAACL-
HLT). Los Angeles, pp. 546-554.

Papineni, K. A., S. Roukos, T. Ward, and W. Zhu (2001). Bleu: a Method for Automatic Eval-
uation of Machine Translation. Tech. rep. RC22176 (W0109-022). Yorktown Heights,
NY: IBM Research Division, Thomas J. Watson Research Center, 10 pages.

TAUS-Project (2010). Postediting in Practice. A TAUS Report. Tech. rep. TAUS — Enabling
better translation. URL: https://www.taus .net/reports/postediting-
in-practice.

47

http://dx.doi.org/10.1093/comjnl/7.4.308
https://www.taus.net/reports/postediting-in-practice
https://www.taus.net/reports/postediting-in-practice

Bibliography

48

APPENDIX A

LIST OF THOT MODULES

TO-BE-DONE

49

	Introduction
	Statistical Foundations
	Statistical Machine Translation
	Computer-Aided Translation

	Toolkit Features
	Distribution Details
	Relation with Existing Software
	Current Status
	Documentation and Support
	Citation
	Sponsors

	Installation
	Basic Installation Procedure
	Alternative Installation Options
	Third Party Software
	LevelDB Library
	KenLM Library
	Berkeley DB Library
	CasMaCat Workbench
	CppUnit

	Checking Package Installation
	Add Thot to the System PATH

	User Guide
	Toolkit Overview
	Corpus Partition
	File Naming Conventions
	Corpus Preprocessing Tools
	Tokenization
	Lowercasing
	Corpus Cleaning

	Training and Tuning Tools
	Language Model Training
	Translation Model Training
	Basic Configuration File Generation
	Parameter Tuning
	Phrase Model Filtering

	Search Tools
	Fully Automatic Translation
	Interactive Machine Translation
	Phrase Alignment Generation

	Output Postprocessing Tools
	Recasing
	Detokenization

	Additional Tools
	Output Evaluation
	Automatization of Translation Experiments

	Advanced Functionality
	Online Learning
	Online Learning From Scratch
	Accessing Language Model Parameters From Disk
	Accessing Phrase Model Parameters From Disk
	Using Multiple Language Models
	Using Multiple Phrase Models
	Forcing Translations for Source Phrases

	Changing Configuration Through master.ini File
	General Sample Uses
	Training, Tuning and Translating
	Online Learning

	Troubleshooting

	Code Guide
	Brief Introduction to Autotools
	Main Base Classes Used in Thot
	Base Classes for Statistical Machine Translation
	Base Classes Specific for Interactive Machine Translation

	The master.ini File
	Model Descriptor Files
	Main Binary Programs Provided by Thot
	The ThotDecoder Class
	Unit Testing

	Background
	Bibliography
	List of Thot modules

