Thot Toolkit for Statistical Machine Translation

Quick User Guide

Daniel Ortiz Martinez
daniel.ortiz.phd @ gmail.com

August 2018

1 Installation

1.1 Basic Installation Procedure

The code of the Thot toolkit is hosted on github?. To install Thot, first you need to install the
autotools (autoconf, autoconf-archive, automake and libtool packages in Ubuntu). If you are
planning to use Thot on a Windows platform, you also need to install the Cygwin environ-
ment®. Alternatively, Thot can also be installed on Mac OS X systems using MacPorts®.

Once the autotools are available (as well as other required software such as Cygwin or
MacPorts), the user can proceed with the installation of Thot by following the next sequence
of steps:

1. Obtain the package using git:

$ git clone https://github.com/daormar/thot.git

Additionally, Thot can be downloaded in a zip file".
2. cd to the directory containing the package’s source code and type ./reconf .
3. Type ./configure to configure the package.
4. Type make to compile the package.
5. Type make install to install the programs and any data files and documentation.

6. You can remove the program binaries and object files from the source code directory
by typing make clean .

By default the files are installed under the /usr/local directory (or similar, depending
of the OS you use); however, since Step 5 requires root privileges, another directory can be
specified during Step 3 by typing:

$ configure —--prefix=<absolute-installation-path>

For example, if user1 wants to install the Thot package in the directory /home /userl/thot,

the sequence of commands to execute should be the following:

https://github.com/daormar/thot/
Phttps://www.cygwin.com/

‘https://www.macports.org/
dhttps://github.com/daormar/thot/archive/master.zip

https://github.com/daormar/thot/
https://www.cygwin.com/
https://www.macports.org/
https://github.com/daormar/thot/archive/master.zip

1 Installation

$ make clean # This is recommended if the package has already been built
$./reconf

$ configure —-prefix=/home/userl/thot

$ make

$

make install

The installation process also creates three directories with additional information:

* ${PREFIX}/share/thot/cfg templates: contains configuration files to be used
with different Thot utilities (see Chapter 3 for more details).

* ${PREFIX}/share/thot/doc: contains the documentation of Thot, which currently
consists in the Thot manual (thot _manual .pdf).

* ${PREFIX}/share/thot/toy_corpus: contains a very small parallel corpus to make
software tests. The directory includes both raw and preprocessed versions of the cor-
pus (see Sections 2.2 and 3.2 for more details). This corpus may also be useful for new
Thot users trying to get familiar with the toolkit functionality.

See the INSTALL file in the directory where Thot has been downloaded for more infor-
mation.

1.2 Checking Package Installation

Once the package has been installed, it is possible to perform basic checkings in an automatic
manner so as to detect portability errors. For this purpose, the following command can be
executed:

$ make installcheck

1.3 Add Thot to the System PATH

To end the installation process, it might be useful to add Thot to the system PATH. This
will allow us to easily execute commands provided in the package without the necessity of
providing the whole Thot installation path.

For this purpose, we can execute the following commands:

$ THOT_HOME_DIR=<absolute-installation-path>
$ export PATH=S$PATH:${THOT_HOME_DIR}/bin

These variable definitions can be added to the .bashrc user profile file, so as to define
them automatically whenever a new interactive shell session is started.

2 Preliminary Notes

2.1 Corpus Partition

SMT systems use parallel corpora to train and tune the model parameters. After the pa-
rameters have been estimated, the resulting models are used to obtain the target translations.
The completion of these tasks require the generation of a corpus partition composed of three
different sets:

» Training set: the training set is used to train the different statistical models involved
in the translation. It is typically composed by many thousands or even millions of sen-
tence pairs (greater training set sizes usually allow us to increase translation quality).

* Development set: the development set is used for parameter tuning (it is not used in
the initial training stage). This set is typically composed of a few thousand sentence
pairs (1000 or 2000 are usual in common translation tasks).

 Test set: the test set is used to compute automatic evaluation measures using the target
sentence as reference sentences. This set is often composed of a few thousand sentence
pairs in the same way as the development set.

In Thot it is assumed that, for a specific set, there will be two parallel files, one related to
the source language and another related to the target sentence.

2.2 File Naming Conventions

To simplify the usage of some translation tools offered by Thot, it is useful to define a specific
naming convention for the files containing the partition of the parallel corpus. In particular,
the names will be composed by a prefix specific to the source or the target languages, and a
suffix identifying whether the file belongs to the training, development or test set.

To illustrate this file naming convention, we can look at the files that com-
pose the Spanish to English toy corpus included in the package (installed under the
${PREFIX}/share/thot/toy_corpus directory, see Section 1.1):

* {sp}|{en}.train: the files sp.train and en.train compose the training set of the
toy corpus, which is available in the Spanish and English languages.

3 Quick Usage Examples

* {sp}|{en}.dev: sp.dev and en.dev correspond to the development set.

* {sp}|{en}.test: finally, sp.test and en.test correspond to the test set.

3 Quick Usage Examples
3.1 Corpus Downloading

To carry out a simple translation experiment, we are going to execute an Spanish to English
translation task focused on the tourist domain.
For this purpose, we create a new directory called thot, and change the directory to it:

mkdir thot
cd thot

After that, we download a compressed file with the data :

wget http://daormar.github.io/thot/sample_data/data.tar.gz

Once we have downloaded the corpus, we decompress the file and inspect the new direc-
tory that is created:

tar -zxvf data.tar.gz
1ls data

3.2 Corpus Preprocessing

In common translation tasks, it is often interesting to preprocess the available parallel texts to
make the translation process easier.

3.2.1 Tokenization

Thot provides the thot_tokenize tool, which can be used to tokenize texts. The following
list of commands obtain a tokenized version of the corpus files:

3.3 Training and Tuning

thot_tokenize -f data/sp.train > data/sp_tok.train
thot_tokenize —-f data/sp.dev > data/sp_tok.dev
thot_tokenize -f data/sp.test > data/sp_tok.test

thot_tokenize —-f data/en.train > data/en_tok.train
thot_tokenize —-f data/en.dev > data/en_tok.dev
thot_tokenize -f data/en.test > data/en_tok.test

3.2.2 Lowercasing

After tokenizing the corpus, it can also be useful to lowercase it. This frees the translation
system from the task of finding an appropriate capitalization for the translated text.

To lowercase text, Thot provides the thot_lowercase tool. The following commands
lowercase the tokenized source files:

thot_lowercase -f data/sp_tok.train > data/sp_tok_lc.train
thot_lowercase —-f data/sp_tok.dev > data/sp_tok_lc.dev
thot_lowercase -f data/sp_tok.test > data/sp_tok_lc.test

thot_lowercase —-f data/en_tok.train > data/en_tok_lc.train

thot_lowercase —-f data/en_tok.dev > data/en_tok_lc.dev
thot_lowercase —-f data/en_tok.test > data/en_tok_lc.test

3.3 Training and Tuning
3.3.1 Language Model Training

Thot provides the thot_lm_train tool, which can be used to train language models.

The following command line trains a 3-gram language model for the English tokenized
and lowercased training set of the corpus, using the —unk option, storing the results in the 1m
directory:

train_corpus=data/en_tok_lc.train
thot_Im_train —-c ${train_corpus} -o lm -n 3 —unk

The command also generates a model descriptor in the output directory name 1m_desc

that will be useful to generate configuration files.

3.3.2 Translation Model Training

Thot incorporates the thot_tm train tool, useful to train phrase models.

3 Quick Usage Examples

The following command line trains a phrase model for the tokenized and lowercased
training set of the corpus, storing the results in the tm directory:

src_train_corpus=data/sp_tok_lc.train
trg_train_corpus=data/en_tok_lc.train
thot_tm_train -s ${src_train_corpus} -t ${trg_train_corpus} -o tm

The command also generates a model descriptor in the output directory name tm_desc
that can be used to generate configuration files.

3.3.3 Basic Configuration File Generation

Thot uses configuration files to simplify the access to the toolkit functionality. These config-
uration files provides information about the parameters used by the Thot translation system,
including the location of the translation and language models, the set of log-linear model
weights, parameters relevant to the way in which the search process is carried out, etc.

Configuration files can also be generated by means of the thot_gen cfg file com-
mand. For this purpose, it is necessary to provide the descriptors of both the language and
translation models.

The following command line generates a basic Thot configuration file and writes it to the
file before_tuning.cfg:

thot_gen_cfg_file 1lm/lm_desc tm/tm_desc > before_tuning.cfg

3.3.4 Parameter Tuning

After training the language and translation models, it is necessary to execute a parameter
tuning stage. For this purpose, a development corpus separated from the training corpus is
required.

The thot_smt_tune tool allows to perform parameter tuning. For this purpose, it is
necessary a Thot configuration file and a development corpus.

The following command line tunes the system given in the before_tuning.cfg file,
for the tokenized and lowercased development set of the corpus, storing the results in the
smt_tune directory:

src_dev_corpus=data/sp_tok_lc.dev

trg_dev_corpus=data/en_tok_lc.dev

thot_smt_tune -c before_tuning.cfg -s ${src_dev_corpus} -t ${trg_dev_corpus} \
-0 smt_tune

3.4 Generating Translations

After the successful execution of thot_smt_tune , the configuration file corresponding
to the tuned system will be stored in smt_tune/tuned_for_dev.cfg.

3.3.5 Phrase Model Filtering

Phrase models are composed of millions of parameters when they are estimated from large
training corpora, making impossible to store them in main memory when using regular com-
puter hardware. One simple solution to this problem when the set of sentences to be translated
is known beforehand is to filter those phrase model parameters that are relevant to carry out
the translation process.

The thot_prepare_sys_for_test tool allows to filter the parameters of a phrase model.
For this purpose, it is necessary a Thot configuration file and a file with the sentences to be
translated.

The following command line filters the phrase model given in the
smt_tune/tuned.-for.dev.cfg file (obtained after the parameter tuning step) for the
tokenized and lowercased test set of the corpus, storing the results in the filtered.models
directory, where the test_specific.cfg file will be generated:

src_test_corpus=data/sp_tok_lc.test
thot_prepare_sys_for_test -c smt_tune/tuned_for_dev.cfg \
-t ${src_test_corpus} -o filtered_models

3.4 Generating Translations

Thot incorporates tools to translate a set of sentences in a fully-automatic way. This task can
be carried out using both, command line and client-server tools.

3.4.1 Basic Tools

The thot_decoder tool allows to generate translations for a given test set. For this purpose,
a Thot configuration file and a file with the sentences to be translated should be provided.

The following command wuses the system configuration provided in the
filteredmodels/test_specific.cfqg file to translate the tokenized and lowercased
test set of the corpus, storing the results in the output file:

src_test_corpus=data/sp_tok_lc.test
thot_decoder -c filtered_models/test_specific.cfg -t ${src_test_corpus} \
-0 output

3 Quick Usage Examples

3.4.2 Client-Server Tools

The translation functionality mentioned above is also included in the client-server architecture
provided by Thot. This includes two basic tools: thot_server and thot_client .

The thot_server tool implements a fully-fledged SMT system. The most relevant input
parameter that has to provided, the -c parameter, is the name of the configuration file.

On the other hand, thot_client can be used to request translations to the server.
thot_client requires the IP address where the server is being executed using the -i op-
tion, as well as the sentence to be translated, that is provided by means of the -t option.

The following example shows how to obtain the translation of a test sentence of the cor-
pus using the client-server architecture for the filtered models/test_specific.cfg
configuration file:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server
thot_client —-i 127.0.0.1 -t 'voy a marcharme hoy por la tarde .'

After translating the previous sentence, and assuming there are no more to be translated,
we can end the server using the following command:

thot_client -1 127.0.0.1 -e

IMPORTANT NOTES:

* It should be noted that in this example, we do not provide a filtered model but the
general one (smt_tune/tuned-for_dev.cfg). This differs from the example given
for the thot_decoder tool. In spite of the fact that filtered models can be loaded
when using thot_server , the client-server implementation is more suited to work in
a scenario where the sentences to be translated are not known beforehand and thus the
models cannot be filtered.

* When using the client, it is strongly advised to type single instead double quotes to
provide input strings. The reason why is that double quotes enable shell expansion
(e.g. variable substitution), resulting in potentially undesired transformations in the
strings. To avoid this, single quotes can be used.

3.5 Output Postprocessing

Once the output of the system have been obtained, it may be necessary to recase and/or
detokenize the text.

3.6 Output Evaluation

3.5.1 Recasing

If the initial corpus was lowercased, it will be necessary to recase the output of the system.
The Thot toolkit incorporates its own recasing tool: thot_recase .

One possible option to supply the raw text file would be simply passing the target training
set. However, a better option could be to also include the target development set and the
source test set as well (the model can take advantage of information in the source language for
specific words). If the user adheres to the file naming conventions described in Section 2.2,
then it is very easy to generate this raw text file by means of the thot_gen_rtfile tool,
which requires the prefix of the source and target corpus files:

The following commands allows us to recase the output given by the decoder in the ex-
ample shown in Section 3.4 (since the corpus was tokenized during the corpus preprocessing
stage, we should provide the prefix corresponding to the tokenized files):

thot_gen_rtfile -s data/sp_tok -t data/en_tok > rtfile_rec
thot_recase -f output -r rtfile_rec > output_rec

3.5.2 Detokenization

The toolkit also incorporates a tool to detokenize texts: thot_detokenize .
Again, the raw text file required by thot_detokenize can be generated by means of the
thot_gen_rtfile tool, as it was explained above for the recaser.
The following commands allows us to detokenize the recased text obtained in the example
of Section 3.4:

thot_gen_rtfile -s data/sp -t data/en > rtfile_detok
thot_detokenize -f output_rec -r rtfile_detok > output_rec_detok

3.6 Output Evaluation

After translating a test set, the translation quality can be evaluated using automatic measures
provided that there exist reference translations for each source sentence. Thot implements
some tools for this purpose:

* thot_calc. bleu: obtains the BLEU (bilingual evaluation understudy) measure.

* thot_calc_wer: calculates the WER (word error rate) measure (the number of substi-
tutions, insertions and deletions that are required to convert the system translation into
the reference sentence).

The following command allows to evaluate the translation quality of the translations ob-
tained in Section 3.4:

3 Quick Usage Examples

trg_test_corpus=data/en_tok_lc.test
thot_calc_bleu -r ${trg_test_corpus} -t output

3.7 Advanced Functionality

This section explains how to access advanced features included in the Thot toolkit.

3.7.1 Interactive Machine Translation

Thot implements interactive machine translation functionality, which allows to generate suf-
fixes that complete the prefixes validated by the user.

The interactive machine translation functionality implemented in Thot can be accessed by
means of the thot_server and thot_client tools. This functionality includes obtaining
the initial translation of a source sentence and obtaining the suffix that best completes a prefix
given by the user.

Before using the interactive machine translation functionality, it is necessary to initialize
the server. For this purpose, the thot_server tool requires the name of configuration file
that is supplied by means of the -c parameter.

On the other hand, requests to the server can be sent by means of thot_client . Asbasic
parameter, thot_client requires the IP address where the server is being executed using
the -i option. Thot maintains state information through the different interactions between
the user and the system. Some of the information that is mantained is specific to the user
and hence it is important to use different user identifiers for different interactive translation
sessions. The user identifier can be provided by means of the -uid option. To interactively
translate a sentence, the -sc option is used to start the translation process. After that, new
strings can be added to the previously existing prefix by means of the -ap option. It is
important to point out that the server works at character level. Finally, the -rp option can
be used to reset the prefix.

The following example shows how to access the basic interactive machine translation
functionality provided by Thot using the client-server architecture:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server

thot_client -i 127.0.0.1 -uid 0 -sc 'me marcho hoy por la tarde .'
thot_client -i 127.0.0.1 -uid 0 -ap 'I am '

thot_client —-i 127.0.0.1 -uid 0 -ap 'le'

NOTE: at this point, the user prefix provided to the system is 'I am le'
thot_client -i 127.0.0.1 -uid 0 -rp # reset prefix

After finishing the previous interactive machine translation session and provided that
there are no additional sentences to be translated, the server can be terminated by typing:

10

3.7 Advanced Functionality

thot_client -i 127.0.0.1 -e

3.7.2 Online Learning

Thot incorporates techniques that allow to incrementally update the parameters associated to
the features of a state-of-the-art log-linear model.

The online learning functionality implemented in Thot can be accessed by means of the of
the thot_server and thot_client tools. This functionality includes processing a single
training pair and printing the models.

Prior to use the online learning functionality, the server should be initialized. For this
purpose, the thot_server tool requires the name of configuration file that is supplied by
means of the -c parameter.

On the other hand, requests to the server can be sent by means of thot_client . As basic
parameter, thot_client requires the IP address where the server is being executed using
the -i option. In addition to this, the -tr option can be used to specify the training pair
to be processed and the -pr option allows to print the updated models to files. Printing the
models causes the previous ones to be overwritten.

The following example shows how to process a new training pair and print the models
using the client-server architecture:

thot_server -c smt_tune/tuned_for_dev.cfg & # start server
thot_client -i 127.0.0.1 -tr 'esto es una prueba' 'this is a test'
thot_client -i 127.0.0.1 -pr # print models (previous ones are overwritten)

11

	Installation
	Basic Installation Procedure
	Checking Package Installation
	Add Thot to the System PATH

	Preliminary Notes
	Corpus Partition
	File Naming Conventions

	Quick Usage Examples
	Corpus Downloading
	Corpus Preprocessing
	Tokenization
	Lowercasing

	Training and Tuning
	Language Model Training
	Translation Model Training
	Basic Configuration File Generation
	Parameter Tuning
	Phrase Model Filtering

	Generating Translations
	Basic Tools
	Client-Server Tools

	Output Postprocessing
	Recasing
	Detokenization

	Output Evaluation
	Advanced Functionality
	Interactive Machine Translation
	Online Learning

